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Abstract

Optimization is fundamentally grounded in perspective – one party’s desired outcome may induce

unintended harm on another. Such cases of misalignment between designers’ incentives and collective

good therefore demand attention, especially when consequences are meaningful for society. To this

end, we study three settings in which individualistic optimization and social good can conflict.

First, we study how a centralized planner can modify the structure of a social or information

network to reduce polarization. By formulating and analyzing a greedy approach to the planner’s

problem, we motivate two practical heuristics: coordinate descent and disagreement-seeking. We also

introduce a setting where the population’s innate opinions are adversarially chosen, which reduces to

maximization of the Laplacian’s spectral gap. We motivate a heuristic that adds edges spanning the

cut induced by the spectral gap’s eigenvector. These three heuristics are evaluated on real-world and

synthetic networks. We observe that connecting disagreeing users is consistently effective, suggesting

that the incentives of individuals and recommender systems may reinforce polarization.

Second, we build a model of the financial system in which banks control both their supply of

liquidity, through cash holdings, and their exposures to risky interbank loans. The value of interbank

loans drops when borrowing banks suffers liquidity shortages – caused by the arrival of liquidity

shocks that exceeds supply. In the decentralized setting, we study banks’ optimal capital allocation

under pure self-interest. The second centralized setting tasks a planner with maximizing collective

welfare, i.e. sum of banks’ utilities. We find that the decentralized equilibrium carries higher risk of

liquidity shortages. As the number of banks grows, the relative gap in welfare is of constant order.

We derive capitalization requirements for which decentralized banks hold the welfare-maximizing

level of liquidity, and find that systemically important banks must face the greatest losses when

suffering liquidity crises – suggesting that bailouts can yield perverse incentives.

Finally, we study algorithmic fairness through the ethical frameworks of utilitarianism and John

Rawls. Informally, these two theories of distributive justice measure the ‘good’ as either a pop-

ulation’s sum of utility, or worst-off outcomes, respectively. We present a parameterized class of

objective functions that interpolates between these two conflicting notions of the ‘good’. By imple-

menting this class of objectives on real-world datasets, we construct the tradeoff between utilitarian

and Rawlsian notions of the ‘good’. Empirically, we see that increasing model complexity can mani-

fest strict improvements to both measures of the ‘good’. This work suggests that model selection can

be informed by a designer’s preferences over the space of induced utilitarian and Rawlsian ‘good’.
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Chapter 1

Introduction

Recent decades have seen societal systems imbued with a greater degree of technological complexity.

One such feature of this trend is the widespread use of optimization in decision-making. These

tools often come with the promise of significant improvements in scope or quality for those who

implement them, and hence are appealing in a wide variety of settings. For example – companies

may use automated screening to select interviewees with reduced labor requirements, firms in the

financial system may discover an allocation of their capital that reduces their exposure to risk, and

social media platforms may provide better recommendations to their users. In these cases and others,

there is always an inherent objective provided by designers; selection of better candidates, reducing

portfolio risk, or increasing user engagement.

It is critical to note that such goals largely reflect the perspective of a single party. Namely, there

is no reason to assert that designers’ objectives are fundamentally aligned with the interests of other

stakeholders in the system. When advancing their own agenda designers may induce harm on other

parties, and depending on the particular context this externality can be significant. For illustrative

purposes, let us consider the example of a company selecting candidates to fill a position. They

may observe that applicants from one or more groups possess weaker qualifications. In their desire

to select the ‘best’ from a given pool, they may systematically deprive this group from employment

opportunities. Over time, this behavior could even reinforce the belief that these candidates are

inherently less capable. In contrast, the very same observation could be used to hypothesize that

equally-qualified applicants were adversely affected by other forces of inequality. These individuals

themselves may desire a screening process guided by fair equality of opportunity, wherein their

perceived disadvantages are justly contextualized.
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In principle, these types of externalities emerge due to the fact that designers’ share of agency is

greater than their stake – the outcome is dictated by those with influence, and indifferent to the rest.

In such cases, the emergent discrepancy between designers’ interests and broader notions of collective

good motivates a deeper understanding of potential harms. Although this misalignment can be –

and often is – present without any use of optimization, the consequences in large-scale settings can

clearly be more punishing. It is therefore necessary to take particular care when optimization and

other algorithmic tools are used for widespread societal decision-making.

This thesis studies three distinct socioeconomic systems wherein collective good and optimization

can come into conflict. Chapter 2 focuses on the emergence of opinion polarization in social networks.

It formulates heuristics by which a network planner can modify the network structure in order to

reduce the level of polarization. Both the formulation and findings contrast with the traditional

problem of content recommendation. In Chapter 3, we model a financial system in which individual

firms optimizing their portfolio – exclusively in their own best interests – causes the collective utility

in the system to be reduced. In addition, regulatory interventions for ameliorating these effects are

presented. Finally, Chapter 4 formulates classical machine learning problems through the lens of

two distinct ethical frameworks. It relies on seeing the allocation of predictive error as a problem

of distributive justice, and allows for tradeoffs between the two conflicting notions of ethical ‘good’.

The following sections briefly summarize the context and results of each Chapter.

1.1 Opinion Polarization in Social Networks

Social media has become prevalent in recent years, and individuals are increasingly reliant on these

platforms for obtaining news and connecting with others. Paradoxically, the greater degree of

connectivity in populations has coincided with stronger polarization of opinions. It is believed that

social media plays an important role – users can change their opinions depending on the information

and content they are exposed to. From the perspective of social media platforms, content mediation

is often driven by so-called recommender systems, which aim to expose a user to pieces of content

that are similar to those they have liked. In users, the well-studied phenomenon of confirmation bias

leads them to seek out content that aligns with their current opinions. It has been seen that these

two forces contribute to increasing polarization (Chitra and Musco, 2020; Bhalla et al., 2021).

Chapter 2 aims to assess how the structure of social networks can contribute to opinion polariza-

tion. In particular, it asserts that how users are connected to each other is critical for understanding

the level of polarization. We study the effects of both a fixed social network, and small modifications
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made to its edges in the interest of reducing polarization. It is important to note that we consider

polarization to be an undesirable feature for a population – in which case the incentives of both

individuals and social media platforms will fail to bring opinions closer to a consensus.

This chapter uses tools from spectral graph theory and models of opinion dynamics. In part, it

contains work published in Racz and Rigobon (2023).

Main Results There are three branches of theoretical contributions to highlight, along with sev-

eral simulations.

First, we will see how polarization is tied to structural properties of social networks. In partic-

ular, it is shown that the presence of bottlenecks in the graph can contribute to greater levels of

polarization. Therefore, echo chambers and tightly-knit community structures can be liabilities –

uniformly connected networks are most conducive to low-polarization outcomes.

Second, we present an optimization problem for a planner who can perturb the network’s struc-

ture in order to reduce polarization. In stark contrast to this problem, traditional recommendation

systems will often operate with the goal of increasing user engagement or satisfaction. We will

see that the largest reductions in polarization can be obtained when disagreeing individuals are

connected, which suggests that neither users nor platforms would create these connections when

operating selfishly.

Third, we study a different setting for the planner wherein the population’s opinions are unknown.

The resulting problem of minimizing worst-case polarization reduces to a fundamental problem in

spectral graph theory – the maximization of a graph’s spectral gap. Colloquially, this planner will

aim to reduce the presence of any strong bottlenecks in the graph structure. We will see that adding

edges between different communities is provably effective for doing so.

In practice, the planner’s optimization problem is challenging to solve efficiently. However, the

previous theoretical results can be used to inform principled heuristics for reducing polarization.

In experimental results, we test these heuristics on several real and synthetic social networks. We

will see that in many cases, polarization can be significantly reduced with a small number of edge

modifications. This suggests that in some cases polarization may be a fragile phenomenon of current

social network structures.
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1.2 Risks in Formation of Interbank Lending Networks

History has shown that financial systems can be at risk of distress spreading throughout firms. For

example, in the crisis of 2008, it was believed that the failure of so-called ‘systemically important’

institutions would lead to widespread losses within both the financial sector and beyond. The result

was a substantial amount of government aid provided to assist distressed banks. For these risks to

have been present, it would be necessary for firms to be connected in some manner – either directly

or indirectly. While these linkages may be beneficial during normal times, they can be liabilities

when shocks occur, and ultimately facilitate the phenomenon of financial contagion. Nonetheless, it

is conceivable that firms form these linkages in a strategic manner – in their own best interest.

Chapter 3 presents a model of a simple financial system in which banks concurrently make

decisions to lend capital to each other. They do so following a core paradigm of financial risk

management – portfolio optimization. In doing so, banks must also control their own exposure

to idiosyncratic shocks. When a bank suffers an overwhelmingly large shock, both itself and its

creditors will suffer losses – allowing for instances of localized distress to have more global effects.

We characterize inefficiencies in this system and study how regulation might be used to improve the

system’s overall welfare.

This work leverages techniques in financial mathematics, stochastic analysis, and optimal control.

It contains results published in a preprint by Rigobon and Sircar (2022).

Main Results We begin by building a novel model of the banking system in which banks control

both their supply of liquidity, through cash holdings, and their exposures to risky interbank loans.

The value of interbank loans jumps when banks suffer liquidity shortages, which can be caused by

the arrival of large enough liquidity shocks. This results in a simple game-theoretic setting, where

each firms’ stochastic payoffs depend on the others’ level of liquidity risk.

In two distinct settings, we compute the unique optimal allocations of capital. In the first, banks

behave with pure self-interest and seek only to maximize their own utility – termed the ‘decentral-

ized’ equilibrium. However, this equilibrium suffers from an important externality – banks are not

punished when their liquidity shortages cause harm to creditors. The second ‘centralized’ equilibrium

follows from a single planner who determines how all capital in the system is to be allocated. The

planner captures the maximal value that can be obtained in the system, but the centralized equi-

librium is unstable from the perspective of individual banks. Under technical conditions, existence

and uniqueness of both equilibria are shown.
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By comparing the two equilibrium allocations, we see that the decentralized equilibrium is more

likely to suffer from liquidity shortfalls that induce systemic losses. In addition, we can quantify

the value lost due to banks’ greedy behavior. This notion of the ‘price of anarchy’ is found to be of

constant order in the size of the financial system, suggesting that larger systems are not relatively

more inefficient. We do, however, observe that in the centralized equilibrium, the likelihood of a bank

having insufficient liquidity shrinks with the system size. This touches on the crucial externality in

the model, wherein individualistic behavior reduces collective value.

Finally, we show how regulation – in the form of capitalization requirements – can force banks

to closely replicate the centralized equilibrium. In doing so, we find that banks with a large number

of counterparties must face the greatest losses when they suffer liquidity shortages – ensuring that

they are incentivized to avoid such crises.

1.3 Tradeoffs in Algorithmic Fairness

As algorithmic decision-making has become more impactful, concerns have been raised regarding the

ethics of their effects. It is especially important to address these concerns when decisions can have

significant and meaningful consequences on humans. Classic examples in criminal justice and hiring

practice have shown that firms can exhibit discriminatory behavior – which can be accentuated by

the use of machine learning. Motivated by these observations, researchers have sought to answer

several questions, among which two are: 1) how does one design a fair algorithm? and 2) what

are the costs associated with addressing unfairness? Rooted in any answer to these questions must

be an underlying definition of fairness itself – many existing works use some kind of egalitarianism.

However, there are a large number of possible ethical frameworks for defining and addressing fairness.

In Chapter 4, we study how two conflicting frameworks for distributive justice can be used to

inform algorithm design. This work proceeds from the fundamental assumption that the optimal

allocation of ‘loss’ (.e. predictive error of a model) can be viewed as a problem of distributive justice.

In particular, we study the tradeoff between utilitarian and Rawlsian models. It is valuable to con-

sider this tradeoff because each of these theories of justice can exhibit its own unique shortcomings,

which can be addressed by the other – utilitarianism suffers from an indifference to inequality, and

Rawlsian design fails to account for the majority of the population. A core feature of this work is

the ability to consider ‘fairness’ through a model designer’s preferences over bundles of utilitarian

and Rawlsian ‘good’.

This chapter combines ideas from a broad set of disciplines, including ethics, welfare economics,
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computer science, and statistics. It contains work published in Rigobon (2023).

Main Results The fundamental contribution of this chapter is a continuum of objective func-

tions for learning problems that allows one to interpolate between two perspectives: utilitarian and

Rawlsian. We assert that a utilitarian designer considers only the minimization of average-case loss,

whereas the Rawlsian designer optimizes for worst-case loss. The minimization of each objective

function along the proposed continuum yields a different ‘optimal’ model – which is tied to the min-

imization of a representative individual’s expected disutility. In this interpretation, the continuum

of objectives is parameterized by a ‘risk aversion’ parameter, such that the utilitarian model corre-

sponds to risk neutrality, and the Rawlsian model to infinite risk aversion. These results are shown

formally through convergence of the sequence of minimizers. By projecting each optimal model onto

the space of utilitarian and Rawlsian ‘good’, we can obtain a frontier that illustrates the tradeoff

between the two ‘goods’. In practice, this frontier can be used to understand the marginal rate of

transformation between these two conflicting notions of the good. Through this perspective, it is

possible to incorporate preferences for fairness – not as a constraint, but as a fundamental part of

the objective.

In experiments, we compute the tradeoff for several common datasets. In addition to observing

the shape of the tradeoff itself, we study how increasing the predictive expressibility of a model

can manifest improvements to both average-case (resp. utilitarian) and worst-case outcomes (resp.

Rawlsian good). In doing so, we argue that fairness-as-a-constraint paradigms may sacrifice large

reductions in worst-case error in the name of minimal improvements to average-case error.

Finally, we present several open problems – both theoretical and empirical – that would help

further explore the features of this tradeoff, and how algorithmic fairness can be more broadly guided

by ethical principles.
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Chapter 2

Opinion Polarization in Social Networks

2.1 Introduction

In recent years there has been a substantial increase in sociopolitical polarization – it is clear that

our society does not agree on issues in politics, science, healthcare, and beyond. Counter-intuitively,

this has been accompanied by the growth of social media platforms; individuals are connecting with

others and sharing information more than ever before. How is it that “bringing the world closer

together”1 resulted in our opinions drifting further apart?

This phenomenon is a byproduct of the structure of our social networks; a greater number of

connections does not necessarily reflect a closeness to consensus. It is possible for the proliferation of

social media to reduce one’s exposure to other opinions, and thereby entrench them in a community

of like-minded users. This feature is known as an “echo chamber,” and has been found to emerge

through the incentives of recommender systems rewiring the network (Chitra and Musco, 2020).

Furthermore, confirmation bias and structural similarity have been found to contribute to increases

in polarization as the structure of the network evolves (Bhalla et al., 2021; Santos et al., 2021).

Therefore, how the population is connected – as opposed to how connected the population is – may

be most important to the emergence of polarization.

In this chapter, we seek an understanding of how a network planner can reduce polarization by

changing the structure of a population’s social or information network. To that end, we present a

model of budgeted network perturbation, where the planner is given a small budget with which to

modify the structure of a given network. We study the planner’s problem in two different settings,
1The original mission statement of Facebook.
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and evaluate simple heuristics on both real-world and synthetic networks.

There has been a significant research effort towards reducing polarization in networks (Chen

et al., 2018; Garimella et al., 2017; Haddadan et al., 2021; Matakos et al., 2017; Rahaman and

Hosein, 2021). In contrast to both Matakos et al. (2017) and Rahaman and Hosein (2021), we hold

fixed the population’s opinions – while allowing the network structure to be modified. This work

differs from Garimella et al. (2017) and Haddadan et al. (2021) in both our use of a distinct measure

of polarization and incorporating opinion dynamics. Finally, we improve upon the closely related

work of Chen et al. (2018) through a more detailed theoretical analysis of edge effects, consideration

of weighted networks, and study of larger datasets.

A very similar contribution to our own is recent work by Zhu et al. (2021), where the authors

present a variation of the problem studied in Musco et al. (2018). Both these studies aim to minimize

the sum of polarization and disagreement by changing the network structure, but Zhu et al. (2021)

impose a budget that ensures only a small number of edges can be changed. These authors use a

similar budget constraint to our own, but their polarization-disagreement index varies greatly with

the edge density of the graph. Although it is convenient for analysis and computation, their index is

inadequate for capturing the dynamics of polarization alone. Nonetheless, we believe the formulation

in this chapter and Zhu et al. (2021) to be practical. The network structure is not assumed to be

completely malleable, but small changes are permitted. For instance, while social media platforms

such as Facebook or Twitter cannot dictate who an individual chooses to ‘friend’ or ‘follow’, these

platforms can curate an individual’s feed to change one’s relative exposure levels to certain content.

This process perturbs the structure of external influence on an individual, so that it differs from their

endogenously created network of ‘friends’ or ‘follows’. If, instead, any of these platforms suddenly

decided to completely rewire their social networks, users may be upset.

It is then natural to consider the following questions: how does the network planner decide to

allocate their budget? How much of an impact can be made? How large of a budget is needed to

achieve a significant reduction in polarization?

We begin by first establishing a relationship between structural properties of a social network

and its level of polarization. We find that both the degree profiles and the strength of information

bottlenecks – quantified by the well-known Cheeger constant in spectral graph theory – are closely

tied to polarization. This result naturally captures the intuition and dangers of echo chambers in

real-world networks.

Next, we focus on the formulation and analysis of two settings for network optimization. In the

first, the planner has full information of the population’s opinions. We provide theoretical motivation
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for two heuristics: coordinate descent and a stepwise disagreement-seeking algorithm. The former

is standard in optimization, while the latter is the antithesis of confirmation bias. Existing research

has shown that addition of edges between like-minded individuals contributes to increasing polar-

ization (Bhalla et al., 2021). Moreover, according to Bindel et al. (2015) it is ‘costly’ for individuals

to be connected to others who disagree with them, and recommender systems can be designed to

minimize disagreement (Chitra and Musco, 2020). Therefore, the incentives of both individuals and

social media platforms may naturally lead to polarization growing over time. In contrast, we show

that a simple disagreement-seeking approach taken by the planner leads to substantial reductions

in polarization. This result is closely tied to our choice of the opinion dynamics model. In this

work, interactions between individuals are always attractive – bringing opinions closer together. In

reality, this is not the case (see Bail et al. (2018); Balietti et al. (2021)). This simplification, however,

will facilitate theoretical results – which we believe can be leveraged for partial understanding of

polarization-reduction strategies in a richer class of models.

This chapter also presents a novel setting for the network planner, wherein the population’s

opinions are chosen adversarially. In several papers from the literature (see, for instance Chen

and Rácz (2022); Gaitonde et al. (2020); Matakos et al. (2017); Rahaman and Hosein (2021)),

an adversary is able to change the individuals’ opinions – seeking to maximize polarization. The

setting we study represents a planner whose network design must be robust to the adversary’s

disruption. We show that this setting for the planner’s problem is intimately related to maximizing

the spectral gap of the graph’s Laplacian, which is a well-studied problem (Donetti et al., 2006;

Wang and Van Mieghem, 2010; Watanabe and Masuda, 2010). We provide theoretical guarantees

for a heuristic that connects vertices on opposite sides of the cut corresponding to the spectral gap.

We then evaluate several natural heuristics on real-world and synthetic networks. There are

significant reductions in polarization for networks with strong initial community structures. Fur-

thermore, we study how the spectral gap and homophily are affected by the planner’s modifications.

We find that the largest reductions in polarization are accompanied by reductions in homophily. In

many cases, however, one of our heuristics effectively reduces polarization with little effect on ho-

mophily. We also observe that two heuristics lead to vertices with extreme opinions becoming more

central in the graph structure. In many of the networks studied, a small budget yields substantial

reductions in polarization.

The chapter is organized as follows. Section 2.1.1 provides a detailed review of recent and related

work. Next, Section 2.2 introduces relevant notation, definitions, and preliminaries. Section 2.3 pro-

vides theoretical ground for three heuristics, which are described and evaluated on several networks
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in Section 2.4. Finally, Section 2.5 concludes and discusses potential directions for future work.

2.1.1 Relevant Literature

The papers most similar to our work are recent studies by Chen et al. (2018), Gaitonde et al. (2020),

Chitra and Musco (2020), and Zhu et al. (2021). Gaitonde et al. (2020) motivates our adversarial

disruption of the population’s opinions, while both Chen et al. (2018) and Zhu et al. (2021) aim to

modify a social network’s structure by adding a small number of edges. Chitra and Musco (2020)

impose a constraint on the edge weight modified – but not the number of edges. In particular, they

focus on changing a large number of edges by a small amount, whereas we seek to do the converse.

Our work differs from Chen et al. (2018) through greater emphasis on theory and generalization to

weighted graphs. The objective function in Zhu et al. (2021) fundamentally differs from our own,

and represents a different problem faced by the network planner.

In addition, this work is broadly tied to the literature on opinion dynamics, perturbation of

network structures, and influencing polarization. Relevant studies in each of these areas are discussed

in the following.

Opinion Dynamics

The study of consensus-forming begins with the seminal work of DeGroot (1974), where under weak

conditions on the social network, the opinions eventually converge to a perfect consensus. This

model was expanded by Friedkin and Johnsen (1990) (and more recently by Conjeaud et al. (2022)),

so that the long-term opinions are heterogeneous. Because of this feature and its simplicity, the

Friedkin-Johnsen (FJ) model has appeared in several recent studies on opinion polarization and

disagreement – see for instance, Matakos et al. (2017); Musco et al. (2018); Chen et al. (2018);

Chitra and Musco (2020); Gaitonde et al. (2020); Zhu et al. (2021); Chen and Rácz (2022). We

will also use the same FJ model. Not only is it standard in the literature, but it is mathematically

convenient for analysis. There are also rich areas of work which justify and extend the FJ model.

For instance, Bindel et al. (2015) show that the expressed opinions of this model correspond to the

Nash equilibrium of a cost-minimizing game between individuals.

There are a few notable extensions to the FJ model, in which individuals have more complex

behavior. For example, a recent survey by Biondi et al. (2022) presents several generalizations

and (relevantly) assesses if polarization can occur in each. A fundamental feature of the FJ model

is that individuals are always drawn toward the opinions of their neighbors – but experimental
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evidence of this feature is inconclusive and contextual (Bail et al., 2018; Balietti et al., 2021).

Motivated by this observation, new models have been developed in which individuals have bounded

confidence (Hegselmann et al., 2002) or even experience repulsion (Rahaman and Hosein, 2021;

Cornacchia et al., 2020). It is also possible to incorporate geometric structures into the dynamics,

such as recent work by Hązła et al. (2019) and Gaitonde et al. (2021). Finally, we note that there

are several related studies within the controls literature, which focus on consensus dynamics on a

network, for instance, when agents have antagonistic dynamics (Altafini, 2012), or are stubborn

(Mao et al., 2018) – see Qin et al. (2016) for a more complete survey.

Optimizing Network Structures

This chapter formulates an optimization problem over network structures, aiming to reduce a par-

ticular definition of polarization. There are several related works in the literature. For example,

Musco et al. (2018) allows unconstrained rewiring of the social network to reduce the polarization-

disagreement index, which is defined as the sum of polarization and disagreement. A recent paper

of Zhu et al. (2021) optimizes the same index via addition of a limited number of edges. This index

is analytically and computationally convenient because of its monotonicity and convexity, but it

is highly sensitive to the edge density of the graph.2 We instead focus exclusively on minimizing

polarization, which is shown to be neither convex nor monotone in Section 2.3.2. However, this

paper restricts edge modifications similarly to Zhu et al. (2021).

A more closely related work by Chen et al. (2018) presents several definitions of ‘conflict’ in social

networks, and studies how they can be minimized through iterative perturbations to the graph.

One such measure of conflict equals polarization. We expand on the authors’ work by providing

a detailed theoretical analysis of edge perturbations on polarization, generalizing the analysis to

weighted graphs, and conducting simulations on larger real-world and synthetic networks.

The aforementioned papers share with our work a definition of polarization. However, it is

possible to optimize for other notions of ‘cohesiveness’ or ‘consensus’. For instance, Garimella et al.

(2017) and Haddadan et al. (2021) both present measures of polarization based on random walks,

and propose algorithms for reducing it via edge addition. The greatest similarity between their work

and ours lies in the use of a greedy, stepwise approach to a combinatorial optimization problem.

However, the authors’ definitions of polarization do not directly incorporate opinion dynamics.3

2The polarization-disagreement index consists of adding polarization, which is on the order of n (the number
of vertices), and disagreement, which is of order m (the number of edges). Therefore this index is dominated by
disagreement for dense graphs (specifically, if m ≫ n).

3We note that the Friedkin-Johnsen model has a random walk interpretation of the long-term opinions, see Gionis
et al. (2013).
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Moreover, in Haddadan et al. (2021), nodes represent webpages, not individuals.

Another definition of cohesiveness, which does not depend on any node opinions or labels, is

the spectral gap of a graph. The spectral gap controls the synchronizability of dynamical systems

and mixing times of Markov chains (Donetti et al., 2006), and therefore its maximization is of great

interest. For instance, Watanabe and Masuda (2010) seek to increase the spectral gap by removing

nodes. Unlike these authors, we focus on changes to a graph’s edges. More relevantly, Wang and

Van Mieghem (2010) study how the algebraic connectivity (i.e., spectral gap) can be increased by

adding edges. The authors present two strategies for doing so, one of which is derived from the

eigenvector corresponding to the spectral gap. We show that the adversarial setting of the planner’s

problem is closely related to their work, and provide bounds on polarization using this eigenvector-

based strategy.

Natural Network Dynamics

A different branch of research aims to understand how polarization is shaped by rewiring dynamics

in the network. For instance, a recent paper by Bhalla et al. (2021) studies how individuals’ local

rewiring rules can lead to higher polarization. The authors conclude that confirmation bias and

friend-of-friend behavior are critical for this result. However, their theoretical results focus on the

polarization-disagreement index. Moreover, we derive an improved upper bound for polarization

in Section 2.3.1. A similar paper by Santos et al. (2021) shows that allowing individuals to rewire

according to structural similarity leads to polarization, although the authors use a distinct model of

opinion dynamics.

It is also possible to study the dynamics driven by a network administrator. Chitra and Musco

(2020) present a setting in which a network administrator rewires the network over time by pro-

viding ‘recommendations’ to users based on minimizing disagreement. They show that without a

regularization term in the optimization problem, the administrator greatly increases polarization.

The authors’ result contrasts with one of the main findings of this chapter, namely that connecting

disagreeing individuals is effective for reducing polarization.

Optimizing Opinion Profiles

While less relevant to this work, a complimentary line of work assumes that the network structure

remains fixed, but the innate opinions are subject to change. For instance, Gionis et al. (2013)

establish NP-Hardness of an opinion maximization problem, in which an administrator takes over

a small set of individuals and sets their opinions to the largest possible value. Papers by Matakos

12



et al. (2017) (resp. Matakos et al. (2020)) seek to minimize polarization (resp. maximize diversity,

i.e., disagreement) by choosing a small subset of individuals to have neutral opinions. Finally, the

work of Rahaman and Hosein (2021) aims to minimize polarization in an extension of the FJ model,

but by shifting each individuals opinion by a small amount.

These studies have generally taken the perspective of a benevolent network planner. It is also

possible to consider the perspective of an adversary, who takes over a small number of individuals

and seeks to maximize polarization or disagreement (Chen and Rácz, 2022). A more powerful

adversary in Gaitonde et al. (2020) chooses the opinions of the entire population to the same end.

In particular, Gaitonde et al. (2020) present a problem of defending the network from this adversary

by making some opinions more resistant to change. We will consider a similar setting, but where the

network is defended by altering its structure instead. Nonetheless, the adversary faced is modeled

on their work.

2.2 Model

An undirected graph G(V,E,W ) is defined by a set of vertices V given by [n] := {1, . . . , n}, a set

of edges E ⊂ V × V consisting of unordered pairs of vertices, and weight matrix W ∈ [0, w̄]n×n.

W is assumed to be a symmetric matrix of non-negative edge weights such that wij > 0 if and

only if (i, j) ∈ E, and w̄ < ∞ indicates the maximum possible edge weight. For a graph G, its

degree matrix D is diagonal, and satisfies Dii = di, where di =
∑

j wij is the (weighted) degree of

vertex i. Let L = D−W denote the combinatorial graph Laplacian, and L = D−1/2LD−1/2 denote

the normalized Laplacian. We write N(i) := {j ∈ [n] : (i, j) ∈ E} for the neighbors of vertex i.

For a matrix A ∈ Rn×n, we will write λn(A) ≥ . . . ≥ λ2(A) ≥ λ1(A) to denote its eigenvalues in

descending order.

Vertices are given innate opinions s ∈ [0, 1]n, which represent a continuum between two extreme

positions on an issue. For instance, an individual who is totally in favor of strict firearm laws may

have an opinion of 0, whereas one extremely against any such regulations would have an opinion of 1.

The population’s opinions evolve over time, beginning from the innate opinions s. The evolution of

opinions follows the dynamics of Friedkin and Johnsen (1990) (see below), and the opinions converge

to a fixed point – denoted z and called the expressed opinions of the population. We are interested

in modifications to the underlying graph G, and therefore take the innate opinions s to be fixed.

Consequently, we write z and z′ for the expressed opinions corresponding to the social networks G

and G′, respectively. Occasionally, to emphasize the underlying graph G, we will write zG .
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2.2.1 Opinion Dynamics

In the seminal model of DeGroot (1974), the population’s expressed opinions converge to a perfect

consensus under weak conditions. A notable extension of the DeGroot model is by Friedkin and

Johnsen (1990), whose model preserves long-term heterogeneity of opinions. In particular, z = c1⃗

if and only if s = c1⃗. This model is convenient for analysis because the expressed opinions can be

written explicitly. Furthermore, several recent works in the literature have leveraged this opinion

dynamics model – see Section 2.1.1 for more detail.

The Friedkin-Johnsen (FJ) opinion dynamics model is specified by the discrete-time mapping

s(t) → s(t+ 1) as follows. We initialize s(0) = s, and iterate

si(t+ 1) =
si(0) +

∑
j∈N(i) wijsj(t)

1 +
∑

j∈N(i) wij
,

where wij is the weight associated with edge (i, j), and is non-zero if and only if j ∈ N(i). The

expressed opinions z are the fixed point of this mapping, given by

z = (I + L)−1s,

where I denotes the n×n identity matrix. Notice that I+L ≽ I is necessarily invertible. Thus, there

exist unique expressed opinions z for any given G and s. Moreover, since the eigenvalues of (I+L)−1

are no greater than 1, the expressed opinions of the FJ dynamics are a contraction of the innate

opinions. This observation also follows from the fact that the FJ model is purely attractive – opinions

of connected individuals are always drawn to each other over time. One of the heuristics we develop

will depend on this feature of the dynamics. However, exposure to substantially differing opinions

in the real-world may yield no effect, or even strengthen one’s original position. In Section 2.5 we

discuss how our results might be leveraged for such a class of richer opinion dynamics models, and

relevant directions for future work.

2.2.2 Polarization and Disagreement

In practice, a perfect consensus is rare; therefore, we seek to understand “closeness” to consensus.

Accordingly, we define polarization to be proportional to the variance of the expressed opinions.

Large polarization indicates that the population is far from achieving a consensus, and vice-versa.

Formally, we define:

Definition 2.1 (Polarization). Given a vector of opinions x = (x1, . . . , xn) and the mean of its
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entries x := 1
n

∑n
i=1 xi, the polarization of x is

P (x) :=

n∑

i=1

(xi − x)
2
= ∥x̃∥2 ,

where x̃ := x− x1⃗ are the mean-centered opinions.

In particular, P (z) is expressed polarization, and P (s) is innate polarization.

It is also useful to define disagreement, which captures distance from consensus on a local scale.

Intuitively, if two vertices have very distinct opinions, then their disagreement is large.

Definition 2.2 (Disagreement). For any vector of opinions x = (x1 . . . xn), the disagreement be-

tween vertices i and j is given by:

Dij(x) := (xi − xj)
2.

Again, between vertices i and j, Dij(z) is the expressed disagreement, while Dij(s) is the innate

disagreement. The two quantities above have been studied in several recent papers on social and

information networks; see Matakos et al. (2017); Musco et al. (2018); Chen et al. (2018); Chitra and

Musco (2020); Gaitonde et al. (2020); Zhu et al. (2021); Bhalla et al. (2021); Rahaman and Hosein

(2021); Santos et al. (2021); Chen and Rácz (2022) and references therein.

2.3 Theoretical Results

We now present several theoretical results on polarization. We study how its magnitude depends on

structural properties of the graph, and how it can vary as a planner modifies the edges.

2.3.1 Opinion Contraction and Polarization

We are primarily concerned with polarization of expressed opinions, P (z). However, the relationship

between expressed and innate polarization depends on G. Since the opinion dynamics model performs

a contraction on the opinions, it follows that P (z) ≤ P (s). In fact, more is true: the contraction

ratio is controlled by the degrees and structural properties of G.

To present this result, we must introduce some notation. For any two disjoint subsets of vertices

B1 and B2, let E(B1, B2) denote the set of edges with one incident vertex in B1 and the other in

B2. We define the conductance of a nonempty subset of vertices X as
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hG(X) :=

∑
(i,j)∈E(X,XC) wij

min{
∑

v∈X dv,
∑

u∈XC du}
.

The isoperimetric number (also known as the Cheeger constant) of a graph G is given by

hG := min
X⊂V,0<|X|<|V |

hG(X), (2.1)

as in Chung (1997), and will appear in the results. Note that hG ≤ 1, since hG(X) = 1 when X

consists of a single vertex. Furthermore, hG = 0 if and only if G is disconnected. The isoperimetric

number of a graph is an indication of the presence of bottlenecks – it is small when there exists a

large set of vertices that is sparsely connected to the remainder of the graph.

We now arrive at a first result on the contraction properties of the FJ model on polarization.

Proposition 2.1. Let dmin and dmax be the minimum and maximum weighted degrees in G, and let

hG be its isoperimetric number. Then,

P (s)

(1 + (2dmax) ∧ (w̄n))
2 ≤ P (z) ≤ P (s)

(
1 + 1

2dminh2G
)2 .

Proposition 2.1 quantifies the effects of the FJ model on polarization. In particular, if G has

strong expander properties (i.e., hG is large), then we expect the expressed polarization to be small,

relative to the innate polarization. The proof of this result can be found in Appendix 2.A, and

follows from simple eigenvalue bounds and a version of Cheeger’s inequality.

This result provides a tighter upper bound on polarization than that of Bhalla et al. (2021). The

tightening is achieved by observing that the mean-centered innate opinions s̃ are orthogonal to the

eigenvector of (I+L)−2 that has corresponding eigenvalue 1. In addition, we can use Proposition 2.1

to show that the complete graph Kn, with all edge weights equal to the maximal w̄, is a global

minimum for polarization.

Corollary 2.2. Fix innate opinions s, and let G be any graph on n vertices with maximal edge

weight w̄. Let zKn
and zG denote the expressed opinions on Kn and G, respectively. Then,

P (zKn) ≤ P (zG).

Moreover, P (zKn) =
P (s)

(1+w̄n)2 .

The key observation in the proof of Corollary 2.2 is that all non-zero eigenvalues of LKn =

w̄
Ä
nI − 1⃗1⃗T

ä
(the Laplacian of the complete graph) are equal to w̄n. Therefore, for any G, the
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value of polarization on Kn achieves with equality the smallest lower bound from Proposition 2.1.

This result also provides a useful reference point for indicating the planner’s closeness to global

optimality.

2.3.2 Given Opinions

We now turn to studying how the planner can decrease polarization by modifying the graph.

In a first setting, we assume that the innate opinions are known. If the planner can change

(by adding or removing) the edge weight between at most k pairs of vertices, what is the least

polarization they can achieve? Formally, given a graph G with innate opinions s, and integer budget

k > 0, we wish to solve

min
G′

P (z′)

s.t. ||W −W ′||0 ≤ 2k,

(2.2)

where the expressed opinions z′ correspond to G′, which must also be an undirected graph with

maximal edge weight w̄. The factor of two in the constraint of (2.2) follows from our assumption of

undirected graphs. The constraint naturally captures the assumption that it is costly for the planner

to modify an edge, but upon committing to doing so, they may freely change the edge weight.4

Problem (2.2) is challenging to solve efficiently since it is non-convex. Beyond the fact that the

ℓ0 constraint gives a non-convex feasible set, the objective function (over valid Laplacian matrices)

is also not convex – see Figure 2.1 for a small example. Therefore, relaxing the ℓ0 constraint to ℓ1

will still yield a non-convex optimization problem. Instead of seeking an optimal set of k edges to

add, we propose a greedy stepwise approach where the weight of k edges are saturated iteratively,

one at a time. This simpler setting is tractable for analysis.

It seems intuitive that adding edge weight to G promotes the flow of information, and thereby

reduces polarization. However, this is not the case in general. We will see that for most non-saturated

edges, there exists a value of the innate opinions for which the addition of weight to that edge will

increase polarization. The exact expression for the change in polarization when adding edge weight

is given in the following.
4In principle, the constraint may bound the absolute difference in edge weights (ℓ1 norm). This is an entirely

different problem, (more similar to Chitra and Musco (2020)) but an interesting direction for future work. We believe
that with an ℓ1 constraint, the planner would distribute its edge weight to maximize the minimal marginal return
of polarization with respect to edge weight. We will also see that relaxing the ℓ0 constraint to ℓ1 is insufficient for
obtaining a convex optimization problem.
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(a) Graph G1
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(b) Graph G2

Figure 2.1: A simple example of the non-convex objective function. With innate opinions s =
[0, 0.4, 1], it can be seen that P

(
1
2 [L1 + L2]

)
> 1

2 [P (L1) + P (L2)]. (Note the abuse of notation to
illustrate P (·)’s dependence on only the Laplacian.) In this particular example, the addition of any
amount of weight to edge (1, 3) increases polarization.

Lemma 2.3. Let G(V,E) be an undirected graph yielding expressed opinions z, and (i, j) be a pair

of vertices with non-maximal weight, that is, wij < w̄. Let vij := ei − ej. For δ ∈ (0, w̄ − wij ], we

construct G+(V,E+,W+) according to w+
ij = wij + δ, and E+ = {(i, j) : w+

ij > 0}. If the expressed

opinions on G+ are given by z+ := (I + L+)−1s, then

P (z)− P (z+) = Dij(z)


 2δz̃T (I + L)−1vij

z̃Tvij

Ä
1 + δvT

ij(I + L)−1vij

ä − δ2vT
ij(I + L)−2vijÄ

1 + δvT
ij(I + L)−1vij

ä2 . (2.3)

The proof of this result can be found in Appendix 2.A. To discuss this result in more detail, it

is useful to define the following.

Definition 2.3 (∂wij
P (L)). Fix some innate opinions s. Let zL denote the resulting expressed

opinions when the underlying graph G has Laplacian L. We write:

∂wij
P (L) = lim

t→0+

P (zL+tLij )− P (zL)

t
(2.4)

where Lij = vijv
T
ij.

This definition allows us to analyze the first-order effects of edge modifications on polarization.

Notice that even if a graph were unweighted, we can define this derivative for its equivalent weighted

graph, where the weight of each existing edge equals one. In the following proposition, we derive a

closed form expression for these partial derivatives.

Proposition 2.4. For fixed innate opinions s, we have

∂wij
P (L) = −2s̃T (I + L)

−2
Lij (I + L)

−1
s̃

= −2z̃T (I + L)
−1
Lij z̃.
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This result allows us to re-write (2.3) in Lemma 2.3 as:

P (z)− P (z+) =
−δ∂wijP (L)

1 + δvT
ij(I + L)−1vij

−
δ2vT

ij(I + L)−2vijÄ
1 + δvT

ij(I + L)−1vij

ä2 (zi − zj)
2.

Therefore, the necessary and sufficient condition for a reduction in polarization due to adding weight

δ to edge (i, j) is:

−∂wij
P (L) > (zi − zj)

2
vT
ij(I + L)−2vij

δ−1 + vT
ij(I + L)−1vij

,

which amounts to a steep enough first derivative.

Lemma 2.3 also allows us to study when polarization increases after adding weight to edge (i, j).

In particular, if z̃T (I+L)−1vij

z̃Tvij
= 0, then P (z+) ≥ P (z). Notice that if vij is not an eigenvector of

L, then the addition of (i, j) can increase polarization when the mean-centered innate opinions s̃ lie

on the (n − 1)-dimensional subspace orthogonal to (I + L)−2vij . This condition is sufficient – but

not necessary – the example in Figure 2.1 illustrates this point. Therefore, the planner cannot add

edge weight arbitrarily and expect polarization to be reduced – the innate opinions can determine

the sign of the effect.

However, there are special cases in which polarization is always reduced, such as the following.

Corollary 2.5. If G, i, and j satisfy N(i) = N(j), then polarization is always reduced by adding

weight δ to the edge (i, j), and the difference is

P (z)− P (z+) = (zi − zj)
2 2δ(1 + δ + di − wij)

(1 + 2δ + di − wij)2
.

This result follows from proving that Lvij = (di − wij)vij under the assumptions; see Ap-

pendix 2.A for full details.

Corollary 2.5 is somewhat counter-intuitive – if we strengthen connections between individuals

who share the same set of neighbors, we may expect to form an ‘echo chamber’. However, the opinion

dynamics show that the addition of weight to such an edge (i, j) will only affect the expressed opinions

of vertices i and j. While this edge fails to have any global effect, it does indeed bring the opinions

of its incident vertices closer together – hence reducing polarization. The limitation of these effects

to only its incident vertices suggests that in practice, the return on polarization may be small.

Lemma 2.3 is also used for arriving at the main result of this Section.

19



Theorem 2.6. Let z, z+, δ, and vij be as before. Then,

P (z)− P (z+) ≤ 1 + λn(L)

1 + 2δ + λn(L)

(
−δ∂wijP (L)

)
.

Furthermore, if there exists ϵ > 0 for which

z̃T (I + L)−1vij

z̃Tvij
≥ ϵ+

δ

2δ + (1 + λ2(L))2
,

then we also have

P (z)− P (z+) ≥ 2δϵ(zi − zj)
2

1 + 2δ
.

Theorem 2.6 directly motivates two heuristics for the planner. First, we see that the largest

possible reduction in polarization is proportional to the first order effect −δ∂wijP (L). Therefore,

it is natural for the planner to iteratively add maximal edge weight along the direction of steepest

descent – a heuristic well-known as a coordinate descent. Additionally, for fixed ϵ, the lower bound

grows with the expressed disagreement. Therefore, edges with large (zi−zj)2 are also good candidates

for the planner to add weight to; we name this strategy disagreement-seeking.

The upper bound in Theorem 2.6 implies that there is a diminishing return in adding more weight

to a single edge, as 1+λn(L)
1+2δ+λn(L) < 1. In particular, this shows that although P (z) is not globally

convex, it is indeed convex along the direction of wij .

2.3.3 Adversarial Opinions

In some cases, the planner may not reliably use the innate or expressed opinions. For instance, they

may be difficult (even impossible) to measure, or vertices may be susceptible to takeovers; see Gionis

et al. (2013); Matakos et al. (2017, 2020); Gaitonde et al. (2020); Rahaman and Hosein (2021); Chen

and Rácz (2022) for examples of the latter. Moreover, individuals’ opinions may be multidimensional

– capturing many distinct issues (e.g., firearm regulation, universal basic income, healthcare, etc.),

all of which are shaped by the network’s structure. Such cases may require the planner to take

a robust approach: they seek to design a network structure that minimizes polarization for any

possible vector of innate opinions.5 Formally, they aim to solve the following:
5There is one other possible justification for this formulation – a robust (or minimax) optimization problem arises

when the decision-maker is ambiguity averse, as is shown axiomatically by Gilboa and Schmeidler (1989a).
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min
G′

max
s∈Rn:∥s∥2

2≤R
s̃T (I + L′)

−2
s̃

s.t. ||W −W ′||0 ≤ 2k.

(2.5)

Polarization in the resulting graph G′ will be robust to the choice of innate opinions, and this

optimization problem yields different graph structures than problem (2.2). As before, the factor of

two in the constraint captures all graphs being undirected.

This optimization problem can be interpreted as a game – an adversary selects s from the n-

dimensional sphere of radius R, and the planner evaluates polarization on this choice of s. A similar

problem appears in Gaitonde et al. (2020), who studies a ‘network defender’ that decreases vertices’

susceptibility to the adversary. In contrast, we consider defending the network through modification

of its structure. However, we note that both our defender and theirs face the same adversary. This

choice allows us to directly compare the effectiveness of these two defensive strategies. Although

such an adversary may not be realistic, we believe this setting has numerous other justifications.

Note that the innate opinions now lie in the n-dimensional sphere, as opposed to the hypercube.

This formulation allows us to relate the adversary’s problem to spectral properties of the resultant

graph G′. In fact, the planner’s problem (2.5) is equivalent to maximization of λ2, the spectral gap

of the Laplacian.

Proposition 2.7. The optimal solution G′ to (2.5) is the same as that of

max
G′

λ2(L
′)

s.t. ||W −W ′||0 ≤ 2k,

(2.6)

If the optimal solution to (2.6) is L∗, then the optimal value of (2.5) is R
(1+λ2(L∗))2

.

For two graphs G and G′, if W ≤ W ′ elementwise, then L ≼ L′, and therefore λ2(L) ≤ λ2(L
′).

Therefore, the planner must only add edge weight to G, as reducing weights cannot increase the

spectral gap.6 The spectral gap of the Laplacian is intimately tied to the synchronizability of various

types of dynamical systems and the mixing time of Markov chains (Donetti et al., 2006) and hence

several studies seek to maximize it (Watanabe and Masuda, 2010; Wang and Van Mieghem, 2010).
6We remark that this monotonicity of the spectral gap in the edge set does not hold for the normalized Laplacian L,

see for instance Eldan et al. (2017).
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In this adversarial setting, where perfect synchronization is impossible, the spectral gap controls the

best achievable consensus.

The proof of Proposition 2.7 follows from solving the inner maximization problem, for which

the optimal solution is the eigenvector of L′ corresponding to the second-smallest eigenvalue. This

eigenvector is called the Fiedler vector of G′, and describes a partition of vertices that approximates

the normalized sparsest cut of G (Chung, 1997).

For a graph with Laplacian L, Proposition 2.7 indicates that the worst-case polarization is equal

to P (L) = R
(1+λ2(L))2 . The adversary achieves this by choosing s̃ along the span of the Fiedler

vector. The planner’s effectiveness in problem (2.5) is controlled by P (L)− P (L′), the difference in

worst-case polarization.

As in the previous setting, we approach this problem by iteratively choosing edges to saturate

– starting from the initial graph until no further budget remains. Therefore, the principal results

address how increasing an edge’s weight affects the spectral gap and thereby polarization. This is

quantified in Theorem 2.8, which relates changes in the spectral gap to elementwise differences in

the Fiedler vector.

Theorem 2.8. Let G be an undirected graph, and (i, j) be an edge with non-maximal weight, that

is, wij < w̄. Let also v be the Fiedler vector of G of unit magnitude with corresponding eigenvalue

λ2(L). Recall that λ3(L) is the third smallest eigenvalue of L, and define β = λ3(L)− λ2(L).

For some δ ∈ (0, w̄−wij ], let G+ be constructed by adding weight δ to edge (i, j). If α = |vi−vj |,

then we have that

max

ß
1− 2δ

β
, 0

™
δα2 ≤ λ2(L

+)− λ2(L) ≤ δα2.

The proof follows from adapting the result of Maas (1987). The bounds are tightest when β is

largest, equivalently when λ2(L) is the sole small eigenvalue of L.

This result motivates a simple heuristic for maximizing the spectral gap, which appears in Wang

and Van Mieghem (2010). The planner can iteratively compute the Fiedler vector and add weight

to non-saturated edges whose incident vertices have large absolute difference in v.

Corollary 2.9 quantifies the effects on polarization induced by the perturbation in Theorem 2.8.

Corollary 2.9. Let P (L) = R
(1+λ2(L))2

be the worst-case polarization on a graph with Laplacian L.

In the setting of Theorem 2.8, we have
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2Rδ

(1 + 2δ + λ2(L))
3 max

ß
1− 2δ

β
, 0

™
α2 ≤ P (L)− P (L+) ≤

4R
(
δ ∨ δ2

)

(1 + λ2(L))
3α

2

In contrast to the setting with full information, the worst-case polarization P (L) cannot increase

when the planner increases an edge’s weight. Recall that this follows from the monotonicity of the

spectral gap in W . However, it is possible that the resulting graph G+ has greater polarization

for some particular innate opinions. The settings in (2.2) and (2.5) are distinct, and therefore the

quantities compared before and after edge-weight addition are fundamentally different.

2.4 Empirical Simulations

If we solved problems (2.2) or (2.6) naively, it would be necessary to test all
∑k

i=1

((n2)
i

)
possibilities.

Given that computing polarization (or the spectral gap) requires O(n3) time, we obtain a crude

upper bound of O(kn2k+3). Note that for fixed k, this rate is polynomial in n – albeit still not

scalable. However, in subsequent experiments we choose k to grow linearly with n, which results

in superexponential runtime. It is therefore extremely impractical to compute the optimal solution,

and we resort to theoretically motivated heuristics.

In Sections 2.3.2 and 2.3.3, we briefly discussed three heuristics for solving the planner’s problem

in a greedy, iterative fashion. Our theoretical results studied how polarization is reduced by addition

of weight to a single edge. Therefore, all of the following heuristics are based on increasing weights

of edges in EC := {(i, j) : wij < w̄}. These are presented below – detailing the edge to be saturated

(i.e. setting edge weight to w̄) at every step and briefly discussing the time complexity of each

iteration. We will compare these approaches with two baselines: adding random non-edges, and

distributing a single unit of edge weight evenly among all non-edges.

• Mixing Kn (M): Add k
|EC | units of weight to each non-edge. This is equivalent to creating a

graph whose adjacency matrix is a convex combination of the original (simple) A and that of

complete graph AKn
= 11T − I. Namely, we study k

|EC |AKn
+
Ä
1− k

|EC |

ä
A. This approach

can be implemented in constant time for any k.

• Random: Fully saturate an edge from EC chosen uniformly at random; this has runtime of

O(log(n)).

• Disagreement Seeking (DS): argmax
(i,j)∈EC

(w̄ − wij)(zi − zj)
2.
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Computing the expressed opinions requires O(n3) time, and it takes O(|EC |) time to check all

candidate nonedges.

• Coordinate Descent (CD): argmax
(i,j)∈EC

− (w̄ − wij)∂wij
P (z)

Requires O(n3) runtime for computing a matrix inverse and multiplication, and O(|EC |) to

find the optimal edge.7

• Fiedler Difference (FD): argmax
(i,j)∈EC

(w̄ − wij)|vi − vj |, where λ2v = Lv

Takes O(n3) time to compute the eigendecomposition of L, and O(|EC |) to find the argmax.

Notice two effects at play: the maximal weight that can be added (w̄ − wij), and some measure

of effectiveness per unit weight (disagreement, partial derivative, or absolute difference in Fiedler

vector). Naturally, each heuristic attempts to maximize the two’s product.

In addition, note that the three non-baseline heuristics have total runtime of O(k(n3 + |EC |)).

The random and MK baselines have shortest runtimes of only O(k log(n)) and O(1), respectively.

However, computing polarization at each step (for purposes of comparison) comes with an additional

cost of O(kn3). We believe that the random heuristic is useful for two reasons. First, it captures a

totally naive recommendation system, which does not curate a user’s content exposure based on their

opinions. Second, in two of the random graph models we study – Erdős-Rényi and stochastic block

– the result of the random heuristic is another graph from the same model, but with slightly higher

edge density. Therefore, this heuristic allows us to study how much additional polarization is reduced

by adding edges in an informed, targeted, manner. The MK baseline is useful for comparing the

relative effectiveness of targeted vs global interventions on the network. It is equivalent to assuming

that users on a platform are randomly and uniformly exposed to others’ content – see Appendix 2.B

for greater discussion and analysis.

We now study the performance of these heuristics on six unweighted graphs. First we look

at three real-world networks – sourced from Twitter, Reddit, and political blogs – and then three

synthetic networks with different characteristics: the Erdős-Rényi, stochastic block, and preferential

attachment models. Table 2.1 provides basic information about the graphs studied. In what follows,

the planner’s budget is given by k = ⌊n
2 ⌋, such that on average each vertex receives one new edge.

We plot the value of polarization with the planner’s budget, along with the reference point P (zKn
),

which represents the global minimum of polarization.
7Naively, one might think we need O(n3|EC |) time to find the optimum, as we perform a matrix multiplication

to compute the gradient of every candidate edge. However, the matrix multiplication is extremely sparse, and can be
reduced to operating on four entries of a fixed, pre-computed matrix.
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Network Vertices n Edges m

Twitter 548 3638
Reddit 556 8969
Blogs 1222 16717

Erdős-Rényi 1000 9990
SBM 1000 13726
PA 1000 4883

Table 2.1: Initial networks for evaluation of polarization-reducing heuristics.

Table 2.2 shows three quantities: expressed polarization, spectral gap, and assortativity of innate

opinions. Expressed polarization is the principal concern of this study, and through Proposition 2.7 is

closely related to the spectral gap. Assortativity is introduced by Newman (2003), and captures the

degree of homophily in a network – which has been shown to control the speed of consensus-forming

(Golub and Jackson, 2012). In particular, assortativity lies in [−1, 1], and measures the correlation

of an attribute across edges. In these experiments, assortativity is evaluated for the innate opinions.

Consistently, the random baseline decreases polarization the least, which is closely followed by

the MK baseline. Both the DS and CD heuristics outperform the Fiedler vector-based strategy. This

is expected, as the FD heuristic is blind to the innate opinions, and uses strictly less information.

However, we observe that DS and CD tend to result in negative values of homophily, while the FD

heuristic does not share this tendency. As an interesting implication, it does not appear that a

reduction in polarization requires negative values of homophily. Namely, it may not be necessary to

directly connect the most polarized individuals in a society to reduce its level of polarization.

In the figures that follow, vertices are colored according to their innate opinions. Graphs are

plotted using the python module networkx (Hagberg et al., 2008). Vertices are placed in two-

dimensional space using force-directed algorithms, in which vertices repel each other and edges

behave like springs in tension. Therefore, the vertex layout reflects their relative attraction. The

same random seed for initial node placement is used for every graph type studied. All code and data

used to produce these results is publicly available here.

2.4.1 Real-World Networks

The Twitter and Reddit datasets used in this section were first collected by De et al. (2014), and

used by both Chen and Rácz (2022) and Musco et al. (2018) in recent work. An additional dataset

comprised of political blogs was collected by Adamic and Glance (2005) and used in Matakos et al.

(2017, 2020).
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Quantity Heuristic Real-World Networks Synthetic Networks
Twitter Reddit Blogs Erdős-Rényi SBM PA

Expressed
Polarization

Initial 0.166 0.0053 36.6 0.242 3.53 1.71

MK 0.086 0.0032 17.9 0.214 2.52 1.24
Random 0.101 0.0035 22.1 0.219 2.58 1.35

DS 0.022 0.0006 8.2 0.143 1.77 0.62
CD 0.020 0.0006 8.2 0.142 1.77 0.61
FD 0.075 0.0013 15.1 0.201 1.81 1.23

Spectral
Gap

Initial 0.44 0.96 0.17 7.4 4.6 2.8

MK 1.46 2.02 1.19 8.4 5.6 3.9
Random 0.69 0.98 0.30 8.2 5.51 3.2

DS 0.79 0.97 1.39 7.4 6.7 3.1
CD 0.80 2.82 1.26 7.4 6.8 3.2
FD 2.05 9.17 2.33 12.0 6.9 4.0

Assortativity of
Innate Opinions

Initial 0.023 -0.007 0.811 -0.016 0.687 0.025

MK – – – – – –
Random 0.018 -0.005 0.779 -0.015 0.661 0.029

DS -0.143 -0.142 0.747 -0.114 0.606 -0.138
CD -0.090 -0.093 0.747 -0.102 0.618 -0.114
FD 0.029 -0.007 0.780 -0.013 0.635 0.026

Table 2.2: Values for expressed polarization, spectral gap, and innate assortativity computed before
and after the planner applies each heuristic to six networks. With the exception of the MK heuristic
(see Appendix 2.B for more details on this approach), the planner adds k = ⌊n

2 ⌋ edges – an average
of one new edge per vertex. The best-performing heuristics are highlighted in bold. Assortativity
depends only on the sparsity structure of the network, and is therefore not reported for the MK
heuristic. Appendix 2.C contains additional figures showing changes in the spectral gap and assor-
tativity with the planner’s budget.

Twitter: This network reflects individuals who tweeted about a Delhi assembly debate in 2013.

The network is shown in Fig. 2.2b, and mainly consists of two communities.

Fig. 2.2a shows the reduction in polarization achieved by the planner when applying each of

the heuristics. Notably, all heuristics outperform our simple baselines. For the two best-performing

heuristics, the first 50 edges modified reduce polarization by about a factor of two, and the subsequent

50 achieve a similar fractional reduction. This highlights both the substantial effect that the planner

can have with minimal modifications to the graph, along with the diminishing returns of their budget.

The networks resulting from the planner’s heuristics are shown in Figs. 2.2c-f. There are notable

reductions in the strength of community structures. While less effective in reducing polarization,

the Fiedler vector-based heuristic (FD) appears to smooth out communities the most.

Reddit: This network was generated by following Reddit users who posted in a politics forum.

Three isolated vertices are removed in preprocessing. Fig. 2.3b shows that the initial network
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Figure 2.2: Evaluation of the planner’s heuristics on the Twitter network. Panel (a) shows the
reduction achieved as the planner gradually adds edges. Panel (b) shows the initial network, while
(c)-(f) visualize the network after the planner has exhausted their budget according to each heuristic.
Vertices are colored according to their innate opinions.

appears to be tightly clustered, and Table 2.2 indicates that it exhibits an extremely small level of

polarization.

For any non-baseline heuristic, the full budget reduces polarization by almost a factor of four.

For the best-performing heuristics, this reduction is by nearly an order of magnitude. We observe

greatly diminishing returns, with the most significant reduction achieved with the first few edges

modified. Moreover, the best-performing heuristics come close to achieving the globally optimal

solution after fully exhausting the budget.

Only minor changes are observed in the resulting graph structures. Figs. 2.3c, 2.3d, and 2.3e

look almost identical to the initial network. In contrast, the graph in Fig. 2.3f does not have as

dense a core, and appears to be more evenly connected. Since maximizing the spectral gap results

in the graph behaving similarly to an expander, which (informally) is equally well-connected across

all cuts, this is to be expected.
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Figure 2.3: Evaluation of the planner’s heuristics on the Reddit network. Panel (a) shows the
reduction achieved as the planner gradually adds edges. Panel (b) shows the initial network, while
(c)-(f) visualize the network after the planner has exhausted their budget according to each heuristic.
Vertices are colored according to their innate opinions.

Blogs: This network was collected by aggregating online directories of political blogs around the

2004 US elections. Note that vertices in this network represent blogs – not individuals as in the

previous datasets. Each blog was identified as either ‘conservative’ or ‘liberal’, which we encode by

innate opinions of 0 or 1, respectively. Observe in Table 2.2 that this network exhibits extremely

large values of polarization and homophily, and a small spectral gap.

We find consistent reductions in polarization with all heuristics – including the baselines. This

network is unique in that the community structure largely mirrors the innate opinions. That is, the

mean-centered innate opinions vector is highly collinear with the Fiedler vector. Hence, both the DS

and FD heuristics will choose to modify edges between the two communities. Furthermore, a large

fraction of the non-edges span the two communities – a randomly chosen edge is therefore likely to

bridge the two.

Fig. 2.4c shares with Fig. 2.4b a tightly-knit core, with a few vertices at the extremities. In

contrast, Figures 2.4d-f depict networks that are more uniformly connected. As before, we find
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Figure 2.4: Evaluation of the planner’s heuristics on the political blogs network. Panel (a) shows
the reduction achieved as the planner gradually adds edges. Panel (b) shows the initial network,
while (c)-(f) visualize the network after the planner has exhausted their budget according to each
heuristic. Vertices are colored according to their innate opinions.

feature this to be most observable with use of the FD heuristic.

2.4.2 Synthetic Datasets

These heuristics are also applied to three canonical models of random graphs. In the first two models,

the number of edges grows quadratically in the number of vertices (for fixed parameters). However,

in our final model, the number of edges is always linear in the number of vertices. Therefore, one

may expect that the impact of the planner’s O(n) edges is greatest in the sparser model – but we

will see that this is not the case.

Erdős-Rényi: A graph from this model connects each pair of vertices independently with a fixed

probability p ∈ [0, 1]. We take n = 1000 and p = 0.02, although the results are qualitatively similar

for different values. The innate opinions are independent uniform random variables in [0, 1].

This model produces homogeneous, well-connected networks, which are good spectral approxi-
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Figure 2.5: Evaluation of the planner’s heuristics on the Erdős-Rényi graph. Panel (a) shows the
reduction achieved as the planner gradually adds edges. Panel (b) shows the initial network, while
(c)-(f) visualize the network after the planner has exhausted their budget according to each heuristic.
Vertices are colored according to their innate opinions.

mations of the complete graph Kn (Hoffman et al., 2021). This can be seen through the large initial

spectral gap in Table 2.2. Therefore, according to Proposition 2.1 it is natural to expect polarization

to be small. Nonetheless, all heuristics fail to significantly reduce polarization. A comparison with

the random baseline is particularly interesting in this model, as it results in another Erdős-Rényi

graph, but with a slightly larger value of p.

Few changes can be seen among Figs. 2.5c-f. However, there are few vertices with extreme

opinions in the fringes of Fig. 2.5d. Instead, these vertices tend to be concentrated in the center of

the graph. This aligns with the most negative assortativity seen in Table 2.2. Notably, this feature

is not visible in Figures 2.5f or 2.5c.

Stochastic Block Model: A graph drawn from a stochastic block model can replicate community

structures, and is shown in Fig. 2.6b. This random graph on n = 1000 vertices with two equal-sized

communities is generated by mirroring the methodology in Chen and Rácz (2022). Specifically, the

probability of inter-community edges is given by q = 0.005, and the probability of intra-community
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Figure 2.6: Evaluation of the planner’s heuristics on the stochastic block model graph. Panel (a)
shows the reduction achieved as the planner gradually adds edges. Panel (b) shows the initial
network, while (c)-(f) visualize the network after the planner has exhausted their budget according
to each heuristic. Vertices are colored according to their innate opinions.

edges is p = 0.05. Since p > q, we expect to see strong communities. The innate opinions of

vertices in each community are drawn independently from either Beta(1, 5) or Beta(5, 1), such that

the distribution of opinions mirrors the graph’s community structure.

In Fig. 2.6a, a nearly identical reduction in polarization can be seen for all non-random heuristics.

This occurs because the mean-centered innate opinions are highly collinear with the Fiedler vector,

which partitions the graph into its two communities. Therefore, both the DS and FD strategies will

add edges between the two communities. Similarly to the Erdős-Rényi setting, the random baseline

yields another stochastic block graph, but with slightly larger parameters p and q.

Qualitatively, all three heuristics can be seen to bring the two communities closer together.

However, in Fig. 2.6d and 2.6e, the vertices with extreme opinions are brought closer to the center.

As before, this is not observed in Fig. 2.6f.

Preferential Attachment Model: This model generates graphs with power-law degree distri-

bution, often known as scale-free or Barabási-Albert networks (Barabási and Albert, 1999). Again,
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Figure 2.7: Evaluation of the planner’s heuristics on the preferential attachment graph. Panel (a)
shows the reduction achieved as the planner gradually adds edges. Panel (b) shows the initial
network, while (c)-(f) visualize the network after the planner has exhausted their budget according
to each heuristic. Vertices are colored according to their innate opinions.

we follow a similar procedure to Chen and Rácz (2022), with n = 1000 vertices added sequentially.

Each incoming vertex connects to at most m = 5 vertices, where the likelihood of connecting to a

particular vertex is proportional to its degree.

This graph tends to exhibit a small, highly interconnected core, and many vertices with low

degree. This structure is not conducive to low polarization, as we see in Fig. 2.7a. The best-

performing heuristics manage to reduce polarization by just over a factor of two, whereas the others

see only negligible fractional reductions. Notably, the FD heuristic only slightly outperforms the

baseline. These observations are a result of the Friedkin-Johnsen model – higher-degree nodes

experience the smallest marginal effects of increased edge weight. Since the preferential attachment

model yields a heavy-tailed degree distribution, a larger fraction of nodes are resilient to the planner’s

modifications. These nodes will also exert large amounts of influence on their neighbors due to their

high degree. We therefore believe that the structural properties of the preferential attachment graph

dampen the planner’s effectiveness.
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Qualitatively, Figs. 2.7d-f appear similar to the original network in Fig. 2.7b. We do not see

strong changes in the structure, which aligns with the minor differences in homophily and spectral

gap in Table 2.2.

2.5 Discussion and Conclusion

In this chapter, we analyze the relationship between structures of social and information networks

and opinion polarization.

First, we establish a relationship between the ratio of expressed to innate polarization. This

ratio is controlled by structural properties of the graph, such as the degree profile and isoperimetric

number (i.e. Cheeger constant). In particular, the worst-case polarization depends directly on the

spectral gap of the Laplacian. Consequentially, we show that the complete graph achieves the global

minimum for polarization. This result aligns with one’s intuition – bottlenecks in the graph are

liabilities to a consensus.

Next, we present two variations of the planner’s problem – one in which the innate opinions

of the population are known, and another in which they are chosen adversarially. In the first, an

expression is derived for the exact difference in polarization when weight is added to a single edge.

We find that strengthening the connections between vertices with large expressed disagreement

reduces polarization. However, it is seen as costly for individuals to interact with differently-minded

others (Bindel et al., 2015). Therefore, reaching a consensus, while arguably beneficial for the

population, may prove costly to individuals. We also present a second setting wherein the planner

defends the network against adversarially-controlled innate opinions. Here, we prove that the planner

aims to maximize the spectral gap. We then show the effectiveness of a strategy based on the Fiedler

vector v – the eigenvector corresponding to the spectral gap. Intuitively, this vector partitions the

graph based on the signs of its elements, and the planner should strengthen edges across the cut.

Finally, we evaluate the performance of four heuristics on several real-world and synthetic net-

works. We find that all strategies may smooth out community structures – often referred to as

‘echo-chambers’. Furthermore, when there are no strong communities present, the Fiedler vector-

based strategy is able to reduce polarization without simultaneously reducing homophily. With

this approach, a reduction in polarization did not necessitate direct connections between opposite-

minded individuals. However, this strategy performed significantly worse in several networks. We

believe that the difference reflects how much of the polarization is driven by the particular values

of opinions. For instance, all three heuristics perform similarly when the profile of opinions mirrors
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the graph structure, and therefore both contribute similarly to the level of polarization. Specifically,

all heuristics behave similarly when the mean-centered innate opinions s̃ are highly aligned with the

Fiedler vector – this observation can be seen most easily in the blogs and stochastic block model

networks.

There are several interesting directions for future theoretical work. First, this work has only

derived bounds for single-edge modifications. It is an open problem to characterize the effects on

polarization of more substantial perturbations to the graph structure. Furthermore, it may be

possible to study the planner’s effectiveness within various classes of random graph models. For

instance, what fraction of non-edges in an Erdős-Rényi graph reduce polarization when added?

At first glance, the results in this chapter are severely limited by the model of opinion dynamics.

Experimental research has shown that exposure to differing opinions may increase polarization (Bail

et al., 2018). Motivated by these observations, many models incorporate non-attractive forces be-

tween opinions – see Cornacchia et al. (2020); Rahaman and Hosein (2021) for extensions of the FJ

model, and Hegselmann et al. (2002); Hązła et al. (2019); Gaitonde et al. (2021) for geometrically-

inspired approaches. Within the broader problem of understanding how social network structures

relate to polarization, this work provides only a first step – the analytical tractability of the FJ

model comes at the expense of expressibility. Nonetheless, we believe these results may be gener-

alizable to a wider class of opinion dynamics models that exhibit attraction – which includes all of

the above examples. For instance, one could modify a ‘disagreement-seeking’ heuristic to only con-

sider non-saturated edges between individuals within each others’ radius of attraction. The study

of polarization-reducing strategies in these more complex models of opinion interaction is a rich and

fruitful area for future work.

Several networks showed large reductions in polarization with a small number of edge modifica-

tions. However, in the Erdős-Rényi and preferential attachment networks, the heuristics presented

in this work did not have as strong of a performance. Beyond our speculation, it remains to be un-

derstood what properties of these networks may limit the planner’s effectiveness, or what minimal

budget is necessary for a fixed fractional reduction in polarization. Moreover, it is not yet clear if

this observation is a feature of the heuristics or the graph itself – are we closely approximating the

true optimal solution?

In this study, we have shown that strengthening ties between disagreeing individuals is an effective

strategy for reducing social polarization. Therefore, if polarization is instead increasing as society

becomes increasingly connected, then both individuals and social media platforms may be failing to

contribute to discourse between opposing perspectives.
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Appendices

2.A Proofs

First, we specify notation. Let I denote the identity matrix, 1⃗ the all-ones vector, and ei the

i-th standard basis vector – all of appropriate dimension. Additionally, for x ∈ Rn, we write

x := 1
n

∑n
j=1 xj to denote the mean of its entries and x̃ := x − x1⃗ for the mean-centered version

of x. For a square matrix A ∈ Rn×n, we write Ai for the i-th column of A. The eigenvalues

of A in descending order are given by λn(A) ≥ λn−1(A) ≥ . . . ≥ λ1(A)). We frequently use the

notation λmax(A) = λn(A) and λmin(A) = λ1(A) to denote the largest and smallest eigenvalue of A,

respectively.

Given an initial graph G and any other graph G′, define T ≡ T (G′;G) ∈ Rn×n to be

T := (I + L)−1(I + L′), (2.7)

where L and L′ denote the combinatorial Laplacians of G and G′, respectively. The dependence

of T on G and G′ will be clear from context and hence omitted. The expressed opinions z′ can be

computed in terms of T and the original expressed opinions as follows:

z′ = T−1z.

This matrix is also useful in allowing us to express the new value of polarization in terms of the

expressed opinions on the initial graph. After some algebra, we have that

P (z′) = z̃T (T−1)TT−1z̃,

where we used (2.7). The spectrum of T will be critical for theoretical results.

Recall the definition of the isoperimetric number (also known as the Cheeger constant) of a graph
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from (2.1). The following simple Lemma is useful in many of the subsequent proofs.

Lemma 2.10. Let dmax and dmin denote the maximum and minimum weighted degrees of G. Addi-

tionally, let L be the combinatorial Laplacian of G, and let λn ≥ λn−1 ≥ . . . ≥ λ2 ≥ λ1 = 0 denote

its eigenvalues in decreasing order. Then, we have that

1

2
dminh

2
G ≤ λ2 ≤ 2dmaxhG , (2.8)

and also

λn ≤ (2dmax) ∧ (w̄n). (2.9)

Proof. For the normalized Laplacian L, the well-known Cheeger inequality (see, e.g., Chung (1997))

gives that

h2G
2

≤ λ2(L) ≤ 2hG .

Notice that the eigenvalues of L = D1/2LD1/2 are equal to those of LD. Additionally, the

ordered eigenvalues of D are simply the degrees of G in descending order. Since both L and D are

positive semidefinite and Hermitian, we can apply a Weyl multiplicative inequality from Horn and

Johnson (1994) to establish that

λi+j−n(LD) ≤ λi(L)λj(D), if i+ j − n ≥ 1 (2.10)

and

λi(L)λj(D) ≤ λi+j−1(LD), if i+ j − 1 ≤ n. (2.11)

Choosing i = 2 and j = n in (2.10) gives that

λ2(LD) ≤ λ2(L)dmax ≤ 2hGdmax.

With i = 2 and j = 1 in (2.11), we have that

λ2(LD) ≥ λ2(L)dmin ≥ 1

2
h2Gdmin.

Combining the previous two displays gives (2.8).
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The inequality (2.9) can be proved using the triangle inequality. The largest eigenvalue of L is

equal to the operator norm of D−A. Since the norm of both D and A are upper bounded by dmax,

we conclude that λn(L) ≤ 2dmax.

Let LKn
= w̄

Ä
nI − 1⃗1⃗T

ä
denote the combinatorial Laplacian of the complete graph, where all

edge weights are equal to w̄. Since LKn ≽ L, for any L, we have that w̄n = λn(LKn) ≥ λn(L).

Proof of Proposition 2.1. We seek to write P (z) in a way that P (s) appears. Recall that z =

(I + L)−1s and also z̃ = (I + L)−1s̃. Therefore

P (z) = z̃T z̃ = s̃T (I + L)−2s̃. (2.12)

Towards the lower bound in the claim, we may use an eigenvalue bound to obtain that

P (z) ≥ λmin((I + L)−2)s̃T s̃ = (1 + λmax(L))
−2P (s).

From (2.9) we have that λmax(L) ≤ (2dmax) ∧ w̄n; plugging this into the display above we obtain

the claimed lower bound.

For the upper bound, first note that the eigenvector corresponding to the largest eigenvalue of

(I + L)−2 is 1⃗. Since s̃ is orthogonal to 1⃗, we have from (2.12) that

P (z) ≤ λn−1((I + L)−2)s̃T s̃ = (1 + λ2(L))
−2P (s).

From (2.8) we have that λ2(L) ≥ (1/2)dminh
2
G ; plugging this into the display above we obtain the

desired upper bound.

Proof of Corollary 2.2. Take any graph G and innate opinions s. Proposition 2.1 implies that

P (zG) ≥ P (s)(1 + (2dmax) ∧ (w̄n))−2 ≥ P (s)(1 + w̄n)−2.

Turning to the complete graphKn, recall that the spectrum of its Laplacian has 0 as an eigenvalue

with eigenvector 1⃗. It also has eigenvalue w̄n with multiplicity n − 1 and eigenspace containing

all vectors orthogonal to 1⃗. Since s̃T 1⃗ = 0, we have (I + LKn
)−1s̃ = (1 + w̄n)−1s̃. Recalling

the definition of polarization, we obtain P (zKn) =
∥∥(I + LKn)

−1s̃
∥∥2 = (1 + w̄n)−2 ∥s̃∥2 = (1 +

w̄n)−2P (s). Comparing with the display above, we see that Kn minimizes polarization over all

graphs with maximal weight w̄.
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Proof of Lemma 2.3. To obtain the claim, we expand P (z+) in a way that P (z) appears. First,

note that L+ = L+ δLij and Lij = vijv
T
ij , and hence we have that T = I + δ(I + L)−1vijv

T
ij . The

Sherman-Morrison formula thus gives that T−1 = I − δ
1+δvT

ij(I+L)−1vij
(I + L)−1vijv

T
ij . Plugging

this into the formula for polarization, we obtain that

P (z+) =
∥∥T−1z̃

∥∥2 =

∥∥∥∥∥

Ç
I − δ

1 + δvT
ij(I + L)−1vij

(I + L)−1vijv
T
ij

å
z̃

∥∥∥∥∥

2

= z̃T z̃−
2δz̃T (I + L)−1vijv

T
ij z̃

1 + δvT
ij(I + L)−1vij

+ (z̃Tvij)
2

δ2vT
ij(I + L)−2vijÄ

1 + δvT
ij(I + L)−1vij

ä2 .
Noting that P (z) = z̃T z̃, andDij(z) = (z̃Tvij)

2 leads to the desired expression after rearranging.

Proof of Proposition 2.4. For simplicity of notation, let A = I + L. Then, for any t > 0, we have

P (zL+tLij )− P (zL)

t
=

s̃T
î(
A+ tvijv

T
ij

)−2 −A−2
ó
s̃

t

Using the Sherman-Morrison formula, we can compute that

î(
A+ tvijv

T
ij

)−1ó2
=

ñ
A−1 −

tA−1vijv
T
ijA

−1

1 + tvT
ijA

−1vij

ô2
= A−2 − 2t

A−2vijv
T
ijA

−1

1 + tvT
ijA

−1vij
+ o(t)

(2.13)

where o(t)
t = o(1) →t→0 0. Plugging (2.13) into (2.4) and taking the limit concludes.

Proof of Corollary 2.5. Recall that vij = ei − ej . Since N(i) = N(j), a direct computation gives

Lvij = (di − wij)vij . Consequently, we have (I + L)−1vij = 1
1+di−wij

vij . Plugging this into

Lemma 2.3 and simplifying yields the desired result.

Proof of Theorem 2.6. The proof of this Theorem follows from bounding the terms in Lemma 2.3.

First, we show the upper bound. Notice that δ2vT
ij(I+L)−2vij

1+δvT
ij(I+L)−1vij

≥ 0, so this term can be dropped.

Through an eigenvalue bound we also find that

1

1 + δvT
ij(I + L)−1vij

≤ 1

1 + 2δλmin((I + L)−1)
=

1 + λn(L)

1 + 2δ + λn(L)
.

Plugging these two observations into (2.3) and rearranging to find ∂wij
P (L) concludes.
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For the lower bound, we have the following sequence of inequalities.

δvT
ij(I + L)−2vij

1 + δvT
ij(I + L)−1vij

≤
δvT

ij(I + L)−2vij

1 + δvT
ij(I + L)−2vij

≤ 2δ

2δ + (1 + λ2(L))2
.

Therefore, by assumption and Lemma 2.3, we have that

P (z)− P (z+) ≤ δ(zi − zj)
2

1 + δvT
ij(I + L)−1vij

[2ϵ] ≤ 2δϵ(zi − zj)
2

1 + 2δ
,

where we used vT
ij(I + L)−1vij ≤ 2.

Proof of Proposition 2.7. This proof requires only that we solve explicitly the adversary’s optimiza-

tion problem.

By construction, s̃ is orthogonal to 1⃗. As a result, the optimal solution for the adversary is
√
Rv2, where v2 is the eigenvector corresponding to the spectral gap of L′, and their optimal value

is:

max
s∈Rn:∥s∥2

2≤R
s̃T (I + L′)

−2
s̃ =

R

(1 + λ2(L′))
2 .

To minimize this quantity, it follows that the planner maximizes the spectral gap of L′.

Proof of Theorem 2.8. This proof uses a variation of a result by Maas (1987). The original result

states that if a simple (unweighted, undirected) graph G+
s is constructed by adding a non-edge (i, j)

to another simple graph Gs, we have

min

ß
λ2(Ls) +

ϵα2

ϵ+ (2− α2)
, λ3(Ls)− ϵ

™
≤ λ2(L

+
s ) ≤ min{λ2(Ls) + α2, λ3(Ls)},

where α2 = (vi − vj)
2, and v is the eigenvector of L corresponding to λ2(L).

It is possible to adapt the original proof to consider the case where weight δ is added to edge

(i, j). This result would yield:

min

ß
λ2(L) +

ϵδα2

ϵ+ δ(2− α2)
, λ3(L)− ϵ

™
≤ λ2(L

+) ≤ min{λ2(L) + δα2, λ3(L)},

The tightest lower bound is achieved by choosing

ϵ∗ =
β − 2δ

2
+

ÇÅ
β − 2δ

2

ã2
+ βδ(2− α2)

å1/2

,
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where β = λ3(L) − λ2(L), so that both terms in the minimum are equal. First, we note that

ϵ∗ ≥ β − 2δ, with equality when α = 2. Additionally, the first term in the minimum is increasing in

ϵ, so therefore we have

β − 2δ

β
δα2 ≤ (β − 2δ)δα2

β − 2δ + δ(2− α2)
≤ λ2(L

+)− λ2(L) ≤ α2,

as claimed since α2 ≥ 0. Finally, note that λ2(L+) ≥ λ2(L) as L+ − L = δLij ≽ 0.

Proof of Corollary 2.9. Recall that we defined P (L) = R
(1+λ2(L))2

. We first prove the upper bound

by using (2.8):

1

(1 + λ2(L))
2 − 1

(1 + λ2(L+))
2 ≤ 1

(1 + λ2(L))
2 − 1

(1 + λ2(L) + δα2)
2

≤ δ2α4 + 2(1 + λ2(L))δα
2

(1 + λ2(L))
2
(1 + λ2(L) + δα2)

2 .

Since δα2 ≥ 0 and α2 ≤ 2 ≤ 2(1 + λ2(L)), we write α4 ≤ 2(1 + λ2(L))α
2, and arrive at

1

(1 + λ2(L))
2 − 1

(1 + λ2(L+))
2 ≤

4α2
(
δ ∨ δ2

)

(1 + λ2(L))
3

as claimed.

The lower bound follows similarly by (2.8). For simplicity of notation, let c = max
¶
1− 2δ

β , 0
©
.

Then,

1

(1 + λ2(L))
2 − 1

(1 + λ2(L+))
2 ≥ 1

(1 + λ2(L))
2 − 1

(1 + λ2(L) + cδα2)
2

≥ c2δ2α4 + 2cδα2(1 + λ2(L))

(1 + λ2(L))
2
(1 + λ2(L) + cδα2)

2 .

Observe that c2δ2α4 ≥ 0, so this term can be dropped. Furthermore, cδα2 ≤ 2δ, which gives us:

1

(1 + λ2(L))
2 − 1

(1 + λ2(L+))
2 ≥ 2cδα2

(1 + 2δ + λ2(L))
3 ,

as desired.
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2.B Mixing Kn

In this section, we analyze the baseline heuristic used in Section 2.4 wherein we take a convex

combination of the given network and the complete graph Kn. A notable feature of this approach

is that it takes a global perspective towards reducing polarization – each non-edge in the network

is equally increased by some small amount. We can imagine this being the result of a network

administrator who occasionally exposes a user to a piece of content selected uniformly at random

from the social network. This differs from the random heuristic in that it slightly increases an

individual’s exposure to all others, as opposed to significantly increasing their exposure to only a

single other user.

Note that this procedure is directly motivated by the result of Corollary 2.2, wherein Kn is shown

to be the global minimum for polarization. It is also valuable to note that this baseline is not feasible

for problem 2.2, since it modifies a large number of edges – albeit by a small amount. Nonetheless,

we can analyze its properties and compare its effectiveness.

Given an initial graph with Laplacian L, and for mixing coefficient η ∈ [0, 1], this heuristic will

yield a graph with the following Laplacian matrix:

Lη = ηw̄
(
nI − 11T

)
+ (1− η)L. (2.14)

Recall that w̄
(
nI − 11T

)
= LKn

, the Laplacian of a complete graph (with maximal edge weight w̄).

For our empirical results, to establish a common scale we will choose the mixing coefficient η

depending on k so that the graphs resulting from all heuristics have identical edge weight. Recall that

we begin with a simple (i.e. unweighted) graph. Therefore, for some integer k, we have η = k
|EC | ,

since weight η will be added to each of the |EC | non-edges.

This procedure is extremely convenient for analysis since both LKn and L share the same eigen-

basis. We can show the following bounds on the resulting polarization, which match up to a factor

of the condition number of L squared.

Proposition 2.11. Let L denote the Laplacian of a graph, possibly weighted with maximal weight

of w̄, and s some innate opinions. For any η ∈ [0, 1] and Lη as defined in (2.14), let also zη denote

the expressed opinions corresponding to Lη. Then, we have:

Å
1

(1 + ηw̄n)2

ã
∨
Å

(1 + λ2(L))
2

(1 + ηw̄n+ (1− η)λn(L))2

ã
≤ P (zη)

P (z)
≤ (1 + λn(L))

2

(1 + ηw̄n+ (1− η)λn(L))2
.

41



Proof. This proof is relatively simple. First, let L = UΛUT denote the decomposition of L, where

U is orthonormal and Λ is diagonal.

We can write LKn
= w̄

(
U(nI)UT − 11T

)
, and therefore will have:

I + Lη = U
[
(1 + ηw̄n)I + (1− η)Λ

]
UT − ηw̄11T .

Using the fact that 1 is an eigenvector of U
[
(1 + ηw̄n)I + (1− η)Λ

]
UT , we can compute:

(I + Lη)
−1 = U

[
(1 + ηw̄n)I + (1− η)Λ

]−1
UT − C11T ,

for some constant C depending on η, n, and w̄. Since s̃ is orthogonal to 1, we will have the following

expression for the resulting polarization:

P (zη) = s̃TU
[
(1 + ηw̄n)I + (1− η)Λ

]−2
UT s̃.

By definition, we will have P (z) = s̃TU(I + Λ)−2UT s̃, from which we obtain:

P (zη)

P (z)
=

yT (I + Λ)
[
(1 + ηw̄n)I + (1− η)Λ

]−2
(I + Λ)y

yTy
, with y = (I + Λ)−1UT s̃.

Straightforward bounds on this Rayleigh quotient give almost exactly the desired result:

1

(1 + ηw̄n)2
≤ P (zη)

P (z)
≤ (1 + λn(L))

2

(1 + ηw̄n+ (1− η)λn(L))2
. (2.15)

The second term appearing in the lower bound can be obtained by observing that λn(Lη) =

ηw̄n+ (1− η)λn(L), and therefore:

P (zη) ≥
P (s)

(1 + λn(Lη))2
=

P (s)

(1 + ηw̄n+ (1− η)λn(L))2
.

Using the inequality P (s) ≥ P (z)(1 + λ2(L))
2 and combining with the lower bound in (2.15)

concludes.
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2.C Additional Figures

In this short section, we present Figures showing how homophily (i.e., assortativity of innate opin-

ions) and the spectral gap are affected by the planner’s modifications. These provide greater detail

than the initial and final values found in Table 2.2.
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Figure 2.C.1: Impacts of the planner’s budget on the Twitter network.
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Figure 2.C.2: Impacts of the planner’s budget on the Reddit network.
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Figure 2.C.3: Impacts of the planner’s budget on the political blogs network.
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Figure 2.C.4: Impacts of the planner’s budget on the Erdős-Rényi graph.
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Figure 2.C.5: Impacts of the planner’s budget on the stochastic block model graph.
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Figure 2.C.6: Impacts of the planner’s budget on the preferential attachment graph.
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Chapter 3

Risks in Formation of Interbank Lend-

ing Networks

3.1 Introduction

Since the global financial crisis of 2008, systemic risk has become a topic of great interest to re-

searchers, industry professionals, and policymakers alike. It is believed that interconnections be-

tween large financial institutions may have allowed distress to propagate throughout the financial

system, and even beyond into other economic sectors. The crisis was extremely costly – even with

bailouts of nearly $500 billion (provided by the US government), losses to the global economy totaled

over $2 trillion (Lucas, 2019). This event renewed researchers’ interest in understanding fragility of

financial systems, and how policymakers can effectively intervene.

The phenomenon in which distress spreads through an entire system is dubbed ‘systemic risk’.

In financial applications, it is natural to study systemic risk through the perspective of networks

and complex systems – the spread of distress is facilitated by the financial network that links in-

stitutions. Its edges represent, for instance, interbank loans (Allen and Gale, 2000) or overlapping

portfolios (Cifuentes et al., 2005), and thereby highlight pathways along which distress can propa-

gate. We may therefore expect that the observed patterns of financial contagion are related to this

underlying network structure.

There is a substantial amount of research studying the dependence of systemic risk on charac-

teristics of the financial network; for recent surveys see Jackson and Pernoud (2021) and Benoit

et al. (2017). For example, a well-known contribution by Allen and Gale (2000) studies how sev-
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eral stylized networks of direct interbank claims can yield different patterns of contagion – or even

no contagion at all. The initial shock caused by idiosyncratic demand for liquidity can cause an

overwhelmed banks’ neighbors to suffer further liquidity shortages. A fully connected network is

found to be optimal for sharing liquidity and therefore reducing the possibility of a systemic crisis.

However, Gai and Kapadia (2010) identify a substantial tradeoff – the resilience of highly connected

financial networks is accompanied by an increased intensity of systemic events. This feature, dubbed

‘robust yet fragile’, implies that although systemic crises are unlikely, they cause catastrophic and

widespread damage.

A critical assumption in this branch of the literature is that the financial network is exogenous.

Such papers are therefore restricted to analyzing the effect of a particular generative model for

the network on systemic risk. Although these models serve as a useful Fbaseline, this assumption

is unlikely to hold in practice. Instead, the network structure may be endogenous; each financial

institution’s connections reflect a set of optimal decisions. This perspective has become more preva-

lent in the literature, with relevant contributions by Bluhm et al. (2014), Acemoglu et al. (2015),

and Farboodi (2021). Interestingly, it is possible for systemic risk to emerge hand-in-hand with

each financial institution’s selfish optimal behavior. However, these individually-optimal decisions

need not maximize the collective well-being of the financial system. In such cases, as in this paper,

financial institutions may be failing to internalize the negative effects of their decisions on the entire

system. It is therefore of interest to analyze the severity of these negative externalities and how they

might be remedied.

In this chapter, we study the formation of such a continuous-time interbank lending network when

banks both face (and can insure against) idiosyncratic liquidity shocks. We formulate a system-wide

optimization problem for both interbank exposures and insurance, in which the resulting network

of interbank linkages indicates the channels for (and magnitude of) the propagation of financial

distress.

The model proceeds as follows: consider a financial system comprised of a given number of banks.

These banks may specialize in different activities; some collect a large number of deposits, whereas

others specialize in revenue generation. This heterogeneity is modeled by unique, proprietary, in-

vestment opportunities (i.e. a portfolio of commercial loans) available to each bank. We assume

that these opportunities are scalable, but are only accessible to their associated bank. The interbank

lending mechanism in our model allows, for example, a deposit-collecting bank A to obtain the large

returns of investment bank B’s unique opportunities through a direct loan of capital from A to B –

after which B invests this amount into their revenue-generating operations. In this setup, bank B is
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liquidity shock
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sufficient liquidity
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Figure 1: For a single bank, the relationship between the cumulative distribution function
(CDF) of the size of a liquidity shock, their supply of cash, and the conditional probabilities
of (in)sufficient liquidity.

effectively operating as an intermediary between bank A and B’s own investment opportunities. We

note that this construction is similar to the model of both Rochet and Tirole (1996) and Acemoglu

et al. (2015), wherein banks invest in each other’s ‘projects’ (henceforth, we will also use ‘projects’

to refer to these unique investment opportunities). In both these models and ours, the riskiness of

these projects is tied to some decision taken by the associated bank.

Although these projects may accrue large rates of return, they are subject to a degree of risk.

More precisely, a bank’s project is periodically struck by liquidity shocks of random magnitude, and

if the size of a shock exceeds the bank’s current supply of liquidity (i.e. cash), then the project’s

value instantaneously drops (we refer to this event as a ‘project’s failure’). These shocks are assumed

to represent, for example, additional liquidity required for the project to succeed, such as occurs

in Rochet and Tirole (1996), Acemoglu et al. (2015), and more. If the required amount of cash

is available, then the project continues smoothly. Conversely, a project’s failure results in all its

investors suffering losses proportional to their stake. Therefore, conditioned on the arrival of a

liquidity shock, a bank’s supply of cash determines their project’s level of risk. Figure 1 illustrates

the relationship between a bank’s liquidity supply, the distribution of a liquidity shock’s size, and

the probabilities of each outcome.

In the model, bank A is assumed to have non-zero stake in their own project, and is therefore

a co-investor of its creditors. Without this assumption, bank A would have no incentive to hold

liquidity – they would be unaffected by their project’s failure. In addition to holding cash, recall

that bank A may lend their capital to any other bank B, which is invested into B’s project. Banks

in the system may also invest in a risk-free bond, or borrow at this rate from the central bank or

external financiers. Finally, each bank is assumed to have some fixed amount of deposits, which

fully specifies their balance sheet. An example is given in Figure 2, with descriptions of each item.
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Bank 1’s
project

Equal to bank 1’s
interbank liabilities

=⇒

Loan from 2

...

Loan from n

Chosen by
other banks

Deposits Fixed

Risk-free
bond

Determined by
self-financing

Bank 1’s projectFixed

Cash (Liquidity)

Loan to bank 2

...

Loan to bank n

Chosen by
bank 1

Net capitalization
(i.e. wealth)

Figure 2: An example balance sheet for bank 1, who borrows at the risk-free rate to finance
their investment portfolio. The decision variables for the bank are highlighted in bold.

A key focus of this work is that each bank endogenously chooses to allocate its capital between

cash (i.e. supply of liquidity) and risky interbank loans. To that end, we will study the optimal

capital allocations for two extreme settings of the financial system. First, consider the decentralized

case – wherein each bank freely allocates their capital with pure self-interest. They seek only to

maximize their utility of wealth at some terminal time. We note that this setting reflects a game-

theoretic equilibrium. Second, we consider the centralized setting – where a single central planner

makes the allocation decisions for all banks concurrently. The planner aims to maximize the sum

of individual banks’ utilities. In both of these cases, we derive the dynamic programming equations

for the respective value functions, and explicitly compute the optimal allocations. Under stricter

conditions, we can conclude uniqueness.

We observe a discrepancy between the optimal allocations computed in both settings; the central

planner often chooses to hold a greater supply of liquidity. This occurs because our model captures a

simple negative externality; when individualistically choosing their cash holdings, a bank determines

the risk experienced by its creditors. An individual bank, operating in a selfish manner, fails to

consider its creditors’ losses when choosing their supply of cash. In contrast, the planner is cognizant

of this systemic effect and acts accordingly by reducing the level of risk for banks with larger

debt. Namely, the central planner achieves the welfare-maximizing (i.e. first-best) allocation for
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the financial system. As a consequence of this discrepancy, a project’s failure is more likely to

occur with decentralized behavior than with a central planner. However, we also observe that the

size of interbank loans is larger in the centralized setting, and hence each project’s failure becomes

more damaging to the system. This tension between the likelihood and severity of failures bears a

resemblance to the ‘robust yet fragile’ observation made by Gai and Kapadia (2010). In particular,

we find that this feature is associated with the socially optimal allocation of capital in the financial

system.

We also study how the two optimal allocations differ as the financial system’s size increases. Two

natural points of comparison are: 1) the difference in, and 2) the ratio of, social welfare between

both settings. The former comparison measures the nominal size of the inefficiency, and the latter

its relative size (which has been dubbed the ‘price of anarchy’ by Papadimitriou (2001)). Perhaps

counter-intuitively, we find that the price of anarchy remains bounded by a constant as the size of

the system grows. Namely, the nominal size of the system’s inefficiency grows at the same rate as

the social welfare itself. These results are first derived theoretically, and also verified in simulations.

Finally, we show that it is possible to alter banks’ co-investment requirements to replicate the

planner’s optimal allocation.

There are several interesting consequences of our results. First, we find that the central planner’s

optimal allocation leads to low-frequency and high-intensity losses to the system. This may imply

that the ‘robust-yet-fragile’ feature of financial networks is socially optimal. However, we see that

the planner perfectly compensates for the larger-magnitude losses by ensuring they are less likely.

As a result, the centralized allocation involves greater lending throughout the system. Additionally,

in both settings we see that the (optimal) endogenous financial networks exhibit a strong ‘core-

periphery’ structure, where only a subset of banks serve as borrowers to the rest of the system.

Intuitively, we also show that systemically important banks must face the greatest losses if they are

to replicate the planner’s optimal allocation. This lends credence to the perverse incentives caused

by ‘too-big-to-fail’ policies or other government bailouts.

This chapter is organized as follows. Section 3.1.1 reviews several relevant branches of literature.

Section 3.2 introduces the model of interbank lending and the dynamics of each financial instrument.

In the first part of our main results, Section 3.3 derives the optimal allocation in the decentralized

(Section 3.3.1) and centralized (Section 3.3.2) settings. We compare these two optimal allocations in

Section 3.4, including an asymptotic analysis of the price of anarchy. Finally, Section 3.5 concludes

with a discussion of our results and directions for future work.
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3.1.1 Related Literature

The foundational papers on continuous-time portfolio optimization are by Merton (1969, 1971).

Merton studies the optimal portfolio allocation between risk-free and risky assets for a investor who

maximizes their expected discounted utility of consumption. In these models, the returns of each

risky asset are driven by correlated Brownian motions. Following from Merton’s seminal papers,

there is a wealth of literature on extensions of the original problem; see Rogers (2013) and references

therein. The techniques we use in this work for deriving the optimal allocation will be similar to

Merton’s original work and its subsequent branch of literature. However, we will be studying a

financial system in which all participants are simultaneously determining their optimal allocations

of wealth – not only an individual. Moreover, to the best of our knowledge, the ability to control

the jump intensity of a risky asset’s returns has not been previously studied in the area of portfolio

optimization.

There are, however, several papers that study an individual who incurs a cost to control the

intensity of a jump process, such as Biais et al. (2010), Pagès and Possamaï (2014), Capponi and

Frei (2015), Hernández Santibáñez et al. (2020), and Bensalem et al. (2020). These studies focus on

Principal-Agent models and largely analyze the optimal contract and behavior. Moreover, they focus

on the presence of moral hazard, where the Principal is unable to observe the Agent’s efforts. Our

mathematical approach for determining a bank’s optimal supply of cash is similar to the models used

in these papers. However, there are a few important differences. First, we study these optimizations

performed simultaneously within a large system, and second, we focus on the inefficiencies that arise

when individuals optimize greedily. Additionally, our setting assumes perfect information.

A strong motivation for this work follows from the systemic risk literature; much of the existing

work assumes a given or exogenous network structure for the financial system. An early paper

by Allen and Gale (2000) studies several stylized structures of interbank claims, and finds that the

structure determines whether or not a local liquidity shock propagates throughout the system. More

recent papers seek to answer similar questions with distinct models; for instance Gai and Kapadia

(2010) and Gai et al. (2011) find that systemic liquidity crises can emerge in highly interconnected

financial networks, albeit with low probability. Caccioli et al. (2014) present a model in which firms’

overlapping portfolios can lead a single default to cause mark-to-market losses throughout the system

– perhaps leading to additional defaults. In Elliott et al. (2014), firms directly own claims each others’

assets and suffer sudden bankruptcy losses if their valuation falls below a threshold. Battiston et al.

(2012) studies a continuous-time process representing financial robustness, and allows its evolution

50



to depend on a given financial network. Finally, several papers including Amini and Minca (2016);

Detering et al. (2019, 2020) and Detering et al. (2021) seek to characterize the asymptotic behavior of

contagion cascades in random inhomogeneous networks as the system’s size grows. In their respective

studies, these different mechanistic models are investigated both theoretically and in simulations.

However, the explicit or implicit networks in these papers share one common feature – they are fixed

or generated according to canonical random graph models. As previously highlighted, we believe

this assumption may not be realistic; institutions in the financial system make optimal investment

decisions, and the resulting network is endogenous – not random. In contrast to this branch of the

literature, our model enables us to investigate how the organization and fundamental parameters of

the financial system can lead to the emergence and scale of its inefficiencies.

We note that the high-level ideas in this chapter are similar to the literature on optimal network

formation. For early work in this area, see Jackson and Wolinsky (1996) and Bala and Goyal (2000),

where the authors present a process by which individuals choose to create edges with each other in

a game-theoretic model. In these studies, individuals must balance a trade-off between the cost of

forming an edge and the rewards associated with the edge. Our paper differs primarily from these

studies through our emphasis on the financial features of the model, and edges are cost-less to form.

Most closely related to this work is the study of endogenous financial networks, including Za-

wadowski (2013); Bluhm et al. (2014); Acemoglu et al. (2015); Babus (2016) and Farboodi (2021).

The work of Zawadowski (2013) shows that individual banks may fail to achieve the socially-optimal

outcome by not buying insurance against their counterparties’ default. While the author’s model

differs greatly from ours, we similarly see that individual banks’ optimal behavior fails to internalize

an externality on the system. A model by Babus (2016) presents an extension of Allen and Gale

(2000). Her model allows banks to make optimal lending and borrowing decisions to redistribute

liquidity throughout the system, and a highly-connected network is again found to be the most re-

silient to contagion. We share the idea of idiosyncratic liquidity shocks, but also study the planner’s

optimal allocation and compare it to the case where banks make selfish optimal decisions.

The three papers most similar to our own are Bluhm et al. (2014),Acemoglu et al. (2015) and Far-

boodi (2021). Our model is mechanistically different from the models in these studies – which are

either static or consist of three distinct time periods. In contrast, we analyze the optimization

problems in a dynamic continuous-time environment. First, Bluhm et al. (2014) construct a model

of optimal interbank lending where banks face both liquidity and capital requirement constraints.

In their model, both the interbank lending amounts and the market prices are determined endoge-

nously. The authors show that contagion can occur (1) directly as a result of counterparty losses
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in the event of a default, or (2) indirectly through the mark-to-market losses incurred by a bank’s

portfolio in the event of a fire sale. Despite the similarities to our paper, the authors largely focus

on numerical and simulation results. In contrast, we seek to provide a theoretical characterization

of the optimal solution wherever possible. Moreover, our model endogenizes the initial sources of

disruption.

The contribution of Farboodi (2021) characterizes how banks optimally lend to each other within

a financial system where there is a strong incentive to serve as intermediaries within the chain of

lending. In her model, an interbank loan will also allow the lending bank to access the surplus

generated by a risky investment of the borrowing bank. She shows that the resulting network

can have a core-periphery structure, and that due to the benefit of intermediation, banks’ private

incentives can fail to achieve the socially optimal outcome. Although there are many similarities

between this paper and ours, we do not focus on the incentive of intermediation, but instead on

banks’ optimal decisions to reduce the riskiness of their investments. Our results can, however,

replicate the core-periphery feature in her paper – a small subset of banks with highly profitable

investment opportunities form the financial network’s core.

Finally, Acemoglu et al. (2015) endogenize both the decision of interbank lending and also the

interbank interest rates. In a similar spirit to Rochet and Tirole (1996), banks exchange deposits

to finance a project that yields high rate of return if run to conclusion, or low returns if liquidated

prematurely. A bank faces external liabilities that may require them to liquidate these projects

– thereby passing losses onto its creditors. The authors find that the optimal contracts do indeed

consider the first-order network effects, wherein a risk-taking bank must pay large interest rates to its

creditors. However, these do not account for the ‘financial network externality’, which can negatively

affect banks that are not party to the contract. It follows that the resulting financial network may

not be efficient (i.e. welfare-maximizing). While their model of interbank lending is similar to ours,

the authors’ analysis is largely focused on stylized networks in which equilibria are shown to exist.

We will instead allow the sparsity structure of the financial network to be endogenously determined

by the interbank lending opportunities.

3.2 Model

Consider a financial system consisting of n different banks. Let (Ω, E ,P) be a probability space,

containing n independent Poisson processes Ñ1
t , ..., Ñ

n
t , t ≥ 0, each of which has corresponding

intensity θ1, ..., θn > 0. These counting processes will be used to indicate the arrival times of
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liquidity shocks to each respective bank. Define F to be the filtration generated by the full set of

jump processes. Hence, we obtain the filtered probability space (Ω, E ,F ,P).

The net capitalization (i.e. net value or wealth) of bank i is given by the non-negative stochastic

process {Xi
t}t≥0. We now aim to describe the dynamics of a bank’s wealth.

3.2.1 Dynamics of Interbank Loans

First, the financial system contains a risk-free bond, which accumulates a constant, fixed rate of

return r. Therefore its price, denoted S0
t , evolves according to the ordinary differential equation

dS0
t

S0
t

= rdt. Banks may both borrow and invest at this risk-free rate, but in our model, we assume

that an investment in the bond does not provide liquidity.

Each bank i has access to a unique set of external investments, e.g. a collection of commercial

loans (henceforth referred to as a ‘project’). These projects are available to another bank j ̸= i in the

system through an interbank loan provided to i. In this manner, bank i serves as an intermediary

between its project and the lending bank j. We will assume that there is no fee associated with this

intermediation. Additionally, the capital invested in interbank loans is assumed to be illiquid. More

precisely, neither the lending nor borrowing banks can use capital invested in a project to meet their

liquidity needs. While these interbank claims indirectly accumulate large constant rates of return

for investors, they will incur losses when the borrowing bank’s project fails. If such a failure occurs,

then the value of all capital invested in the project immediately drops. For instance, it is plausible

that a bank’s revenue operations intermittently require additional liquidity to cover a position or

meet regulatory requirements. A failure to do so may lead to an inability to realize an investment’s

gains, or even directly cause losses.1

Let Si
t denote the time-t value of a single unit of capital invested in bank i’s project. Its dynamics

are given by

dSi
t

Si
t

= (µi + r) dt− ϕi dN
i
t , i = 1, . . . , n. (3.1)

Observe that since µi > 0, this interbank claim has rate of return larger than r. The jump increment

dN i
t is obtained by performing a thinning of the shock arrival process Ñ i

t , and is described in the

next subsection. The increment takes on values in {0, 1}, and is non-zero if and only if bank i’s
1There are several other distinct justifications for this feature of our model. For example, the bank may be

investing in costly, continuous monitoring of its project, which reduces the risk of it suffering losses (e.g. default of its
commercial loans). A different interpretation considers the effect of consumers’ random liquidity preference. We may
imagine that the shock represents depositors’ demand to withdraw cash, and if the bank fails to meet this demand,
they must liquidate the project at a loss to meet their more senior obligation.
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project fails at time t. Finally, ϕi represents the magnitude of losses borne by investors in a project

when it fails, i.e. 1− ϕi is the recovery rate.

Liquidity Shocks and Risk

All projects in the system may experience liquidity shocks; if sufficiently large, these shocks induce

the project’s failure. A key feature of this work is each bank’s ability to control their project’s

susceptibility to failure – by holding a greater supply of liquidity, banks’ projects are safer. In our

model, this is represented through bank i’s ability to influence the intensity of the jump increment

dN i
t that appears in (3.1).

A bank may hold a non-negative amount of their capital as cash, which has a constant price

of 1. Although this capital effectively depreciates at the risk-free rate r (as it cannot be invested

in the bond), it is the only source of liquidity within the system, and is the sole manner in which

a bank can hedge against liquidity shocks. Namely, if a liquidity shock exceeds bank i’s supply of

cash, their project experiences a failure, and investors incur losses. The jump increment dN i
t in (3.1)

represents the arrival of shocks that overwhelm bank i’s supply of cash. Its construction follows from

a probabilistic model of liquidity shocks and a bank’s supply of cash.

Recall that our filtered probability space contains n independent time-homogeneous Poisson

processes Ñ i
t , with rates θi > 0. At time t, if Ñ i

t jumps, then bank i experiences a liquidity shock

of size Xi
tζ

i
t , where the random variable ζit is Ft-measurable. We assume that these shocks are

proportional to a bank’s wealth, and each ζit is independently and identically distributed according

to the cumulative distribution function (CDF) Fi(·). The complementary CDF of ζit is defined as

F̄i(·) = 1− Fi(·).

Let cit ≥ 0 denote the fraction of bank i’s capital held in cash at time t. When the shock to

bank i is larger than their supply of liquidity (i.e. ζit > cit), their project fails. When this occurs,

all investors in the project suffer an instantaneous return of −ϕi on their investment amount. In

particular, if cit = 0, then any liquidity shock to bank i at time t, no matter how small, results in

their project’s failure.

The jump process N i
t is constructed by independently flipping coins at every arrival time of Ñ i

t ,

with success probability given by pit = F̄i(c
i
t). Observe that pit = P

(
ζit > cit

∣∣∣Ñ i
t = 1

)
. If and only

if the flip is won, we let dN i
t = 1. It follows that the instantaneous rate (at time t) of the Poisson

process N i
t is equal to θiF̄i

(
cit
)
.2 The second component of the rate, F̄i(c

i
t) = P(ζit > cit), is the

2This result is a consequence of the thinning properties of Poisson processes. See, for instance, Theorem 1 in Lewis
and Shedler (1979). If {cit}t≥0 is adapted (as we will require), then conditioned on time t, the previous jump process
{N i

s}s∈[0,t] has the desired rate function.
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probability that bank i’s project fails, conditional on the time-t arrival of a liquidity shock with

CDF Fi(·). See Figure 1 for an illustration.

Finally, we will require a few technical conditions on Fi:

Assumption 3.1. We assume that each Fi is absolutely continuous with respect to the Lebesgue

measure. Its density is given by fi(·) = F ′
i (·), which is assumed to be fully supported on R+, and

monotonically decreasing (i.e. f ′i(·) < 0).

If fi(·) had compact support, then it would be possible for a bank’s project to be riskless with a

large enough supply of liquidity. Since the return of this project would be greater than the risk-free

rate, this would lead to all other banks to profit infinitely by borrowing at the risk-free rate and

investing in the riskless project. While the problem may remain analytically tractable, this outcome

is not of practical interest. Our assumption that the density is monotonically decreasing will be used

to establish uniqueness of the optimal financial network.

3.2.2 Dynamics of Wealth

In this model, a bank may provide interbank loans to another; let wji
t ≥ 0 denote the fraction of

bank j’s capital lent to bank i ̸= j. The return experienced by this interbank claim is given by (3.1).

Recall that cit equals the fraction of bank i’s wealth held as cash, which accumulates no return over

time.

The final component influencing bank i’s wealth is their degree of investment in their own project.

We assume that each bank invests a fixed, given fraction of their current wealth. Unlike the interbank

loans, we will assume that this quantity cannot be controlled.3 This assumption has several possible

interpretations. First, it may be the case that bank i is required by its creditors to be a co-investor

in its project. We may also imagine that these projects are initialized by their respective banks,

and simply scaled by any additional investments from the rest of the system. Therefore, the cost of

initialization must be borne by the borrowing bank.

We will use ηi

ϕi
to denote the fraction of i’s wealth that is invested in their own project. This

implies that bank i loses a constant fraction ηi of its total wealth whenever their project fails.4 The

parameter ηi captures the severity of a project’s failure on the associated bank – in the extreme case

of ηi = 1, a single failure will wipe out the bank i. Conversely, if ηi = 0, then bank i has no stake
3In principle, we could imagine allowing bank i to also control their exposure to their own project, while only

being subjected to a minimum requirement. However, doing so introduces significant challenges in characterizing the
optimal allocations.

4If, instead, this were a fixed amount and not fraction, then as a bank’s wealth grows, their incentive to hold
liquidity would become weaker. Such a setting is quite interesting in its own right, and may perhaps lead to a cyclic
supply of liquidity – but it is not the focus of this chapter.
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in their project and is unaffected by its failure. We will take ηi ∈ (0, 1), away from the two extreme

cases. Therefore, the remaining Xi
t(1 − cit −

∑
j ̸=i w

ij
t − ϕ−1

i ηi) units of wealth are invested in (or

borrowed at) the risk-free rate.

Putting together the dynamics for each component of bank i’s wealth, we see that Xi
t , follows

dXi
t

Xi
t

=

Ñ
1− cit −

∑

j ̸=i

wij
t − ηi

ϕi

é
dS0

t

S0
t

+
∑

j ̸=i

wij
t

dSj
t

Sj
t

− ηi
ϕi

dSi
t

Si
t

, i = 1, · · · , n.

By using (3.1) and the dynamics of S0
t , we obtain the following simplified expression:

dXi
t

Xi
t

=

Ñ
(1− cit)r +

∑

j ̸=i

wij
t µj +

ηiµi

ϕi

é
dt−

∑

j ̸=i

wij
t ϕj dN

j
t − ηi dN

i
t , i = 1, · · · , n. (3.2)

A novel contribution of this work is the control cit – while there is no return accumulated by this

capital held as cash, it serves to reduce the likelihood that bank i’s project fails, which would cause

them to lose a fraction ηi of their wealth.

We say that (ci· , w
i·
· ) ∈ Ai

s,t, the set of admissible controls for bank i between times s and t, if

it is adapted to the filtration F and satisfies both ciu ∈ R+ and wij
u ∈ [0, ϕ−1

j ) for all u ∈ [s, t] and

j ̸= i. The upper bound on wij
u ensures that wealth will always remains positive.

All banks seek to maximize their own utility of wealth at a common terminal time T < ∞. As

is relatively standard in the literature, a bank’s utility function Ui ∈ C∞(R+) is assumed to have

constant relative risk aversion:

Ui(x) =





x1−γi

1−γi
γi > 0, γi ̸= 1

log x γi = 1.

(3.3)

3.3 Decentralized and Centralized Financial Networks

We consider two distinct organizations of the financial system. In the first, banks operate only

in their self-interest – seeking to maximize their own expected terminal utility. We call this the

decentralized setting, as there is no coordination between banks. Instead, each bank’s optimal

allocation reflects their best response to the others’ decisions. On the other hand, the centralized

setting in Section 3.3.2 will consider the perspective of a single central planner who determines all

banks’ allocations to maximize welfare – as measured by the sum of all banks’ utilities.
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Both allocations are important to consider. The decentralized optimum reflects a game-theoretic

equilibrium of the financial system, where each bank chooses their controls optimally given all others’

actions. Therefore, from the perspective of individual banks this is a stable allocation. In contrast,

the centralized optimum reflects the maximum total utility that could exist in the financial system

if banks coordinated. We will study the differences between these two optimal allocations, which

reflect the severity of our model’s externality, in Section 3.4. Finally, the optimal allocations yield

a financial network of interest, which represents direct balance sheet exposures between banks.

3.3.1 Decentralized Network

Let us define the value function of bank i to be the supremum over all admissible controls of their

expected utility at the terminal time:

Vi(t, x) = sup
(ci· ,w

i·
· )∈Ai

t,T

E
[
Ui(X

i
T )
∣∣Xi

t = x
]
. (3.4)

Recall that Ai
t,T denotes the set of admissible controls for bank i – defined in Section 3.2.2. Note also

that each bank is simultaneously solving their own optimization problem, and therefore the value

function in (3.4) of bank i may depend on the allocations chosen by other banks within the system.

In this sense, the value functions are related and our model’s setup can be considered game-theoretic.

Our first result derives the non-local dynamic programming equation (which is often referred to

as the Hamilton-Jacobi-Bellman equation) for the value function under regularity.

Proposition 3.1. If there exist optimal controls and the value function in (3.4) is C1,1([0, T ),R+),

then it solves the following non-local partial differential equation (PDE):

0 = ∂tVi + sup
ci,wi·

{
(1− ci) r +

∑

j ̸=i

wijµj +
ηiµi

ϕi


x∂xVi + θiF̄i(ci)

[
Vi(t, x(1− ηi))− Vi

]

+
∑

j ̸=i

θjF̄j(cj)
[
Vi(t, x(1− ϕjwij))− Vi

]}
(3.5)

with terminal condition Vi(T, x) = Ui(x). Where unspecified, the value function and its derivatives

are evaluated at (t, x).

The proof is contained in Appendix 3.A.1, and follows from applying Itô’s formula to the value

function between t and an appropriately defined sequence of stopping times. Assuming existence of

the optimal controls is verified by Corollary 3.3.
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Fortunately, it is possible to find a separable solution to (3.5), and explicit solutions for the

optimal allocations. It is convenient to introduce the following notation:

Γ(δ; γ) =





1−(1−δ)1−γ

1−γ γ > 0, γ ̸= 1

− log(1− δ) γ = 1,

(3.6)

for any δ ∈ [0, 1). Within this range, we note that Γ ≥ 0. There is a natural interpretation of

this object; for a utility function of the form in (3.3), Γ(δ; γ) is proportional to the loss in utility

caused by losing a fraction δ of wealth. More precisely, Γ(δ; γi) = xγi−1 [Ui(x)− Ui(x(1− δ))] for

any x > 0.

We can now state our second main result, which presents a solution to (3.5) and computes the

optimal allocation of capital.

Proposition 3.2. The unique optimal cash and interbank lending amounts for the maximization

problem in (3.5) are given by

ĉi =





f−1
i

Ä
r

θiΓ(ηi;γi)

ä
if r

θiΓ(ηi;γi)
≤ fi(0)

0 otherwise
∀i = 1, · · · , n

ŵij =





1
ϕj

Å
1−
Ä
ϕjθj F̄j(ĉj)

µj

ä1/γi
ã

if ϕjθj F̄j(ĉj)
µj

≤ 1

0 otherwise
∀j ̸= i.

(3.7)

Furthermore, with the notation

J∗
i =

ηiµi

ϕi
+ (1− ĉi)r − θiF̄i(ĉi)Γ(ηi; γi) +

∑

j ̸=i

ŵijµj − θjF̄j(ĉj)Γ(ϕjŵij ; γi),

the following are explicit solutions to (3.5).

(i) if γi = 1 and Ui(x) = log x, we have Vi(t, x) = gi(t) + log x, where gi(t) = (T − t)J∗
i

(ii) otherwise, for γi ̸= 1 and Ui(x) = x1−γi

1−γi
, then we have Vi(t, x) = gi(t)Ui(x), where gi =

e(1−γi)(T−t)J∗
i .

The proof, which is also given in Appendix 3.A.1, follows from plugging in the proposed solution,

simplifying, and then analyzing the necessary and sufficient conditions for optimality of the resulting

maximization problem. A key observation in this proof is that the maximization problem in (3.5) is

additively separable between each of the controls ci, wi·.
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Remark 3.2. The optimal interbank loan ŵij depends explicitly on ĉj through the function F̄j(ĉj).

Moreover, for any choice of bank j’s cash supply, there exists a corresponding optimal value of wij. In

a game-theoretic sense, this would be bank i’s best response to j’s choice. However, bank j’s optimal

value ĉj depends only on fixed model parameters. This ensures that ĉj is bank j’s best response to

any decisions made by the other banks, and is therefore a dominant strategy. Hence, the ‘game’ is

trivialized – one can compute every other bank’ optimal ĉj, after which the corresponding ŵij’s can

be easily found.

The final result of this subsection verifies that the solution given in Proposition 3.2 is indeed

equal to the value function.

Corollary 3.3. The value function in (3.4) is given by

Vi(t, x) =





gi(t) + log x if γi = 1

gi(t)
x1−γi

1−γi
otherwise,

where gi(t) and the optimal controls are given in Prop. 3.2.

The proof in Appendix 3.A.1 uses a verification argument. We show that any solution to (3.5)

that is once continuously differentiable in both time and space is equal to the value function. Since

the proposed solutions in Proposition 3.2 satisfy this regularity condition, we conclude the desired

claim. Finally, this result verifies the assumption made in Proposition 3.1 regarding the existence

of optimal controls.

Analysis of Decentralized Optimum

With explicit solutions for the optimal allocations, it is possible to analyze their dependence on the

exogenous parameters of the system. First, note that the optimal interbank loan ŵij depends on

bank i only through their risk aversion parameter γi. Hence, if γi = γk then ŵij = ŵkj . Although

the fractional amount of these interbank loans are equal, the nominal amounts may differ. However,

the optimal lending amount is decreasing in the lender’s risk aversion coefficient γi, as we might

expect.

From (3.7), we can also see that ĉi is decreasing in the risk-free rate. This occurs because cash

is effectively depreciating at the risk-free rate r. However, each unit of additional cash provides a

marginal benefit by lowering the risk of a bank’s project failing. From the proof of Proposition 3.2,

the optimal choice of ĉi will solve the following:
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max
ci≥0

{
− rci − θiF̄i(ci)Γ(ηi; γi)

}
,

which indicates that the resulting ĉi achieves the optimal tradeoff between the cost of liquidity and

induced risk. In particular, the optimal ĉi ensures that the marginal cost of holding liquidity (r)

equals the marginal benefit of reducing risk (θifi(ĉi)Γ(ηi; γi)). In the extreme case where r is large,

it may be too costly (relative to the potential losses) for a bank to hold any amount of cash, i.e.

ĉi = 0.

The quantity µj

ϕjθj F̄j(ĉj)
, which appears in (3.7) for ŵij , is similar to the well-known Sharpe ratio.

However, there is one main difference. The variance of returns for bank j’s project can be controlled

by bank j itself. Nonetheless, notice that the optimal investment ŵij grows with this ‘Sharpe-like’

ratio. If, in particular, the ratio is less than one, then the expected excess return of the interbank

loan (equal to µj − ϕiθiF̄j(ĉj)) is negative, and bank i would in fact prefer to short project j. Since

this is not permitted in our model, bank i resorts to an investment of zero. As a direct result, notice

that network’s sparsity structure is dictated by this quantity – a bank j has creditors if and only if
µj

ϕjθj F̄j(ĉj)
> 1. This implies a ‘core-periphery’ network structure, such that a subset of banks serve

as the only borrowers – an example of such a financial network can be seen in Figure 3.

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Figure 3: Sample financial network generated by the
decentralized optimum. Edges point from lending to
borrowing banks, and their width indicates the nominal
size of the exposures. Node size indicates total capital-
ization.

Bank µi (%) ϕi ηi θi γi F̄i(x)

1 0.9 0.2 0.5 0.04 0.5 e−0.5x

2 1 0.3 0.6 0.08 1.7 e−0.6x

3 1.5 0.9 0.7 0.12 1 e−0.7x

4 1.3 0.6 0.4 0.05 0.3 e−2x

5 1.3 0.82 0.9 0.02 0.87 e−2.4x

Table 1: Parameters for the financial network in Figure 3.
The risk-free rate is equal to r = 5%. Code generating this
figure can be found here.

3.3.2 Centralized Network

Consider now the perspective of a single central planner of the financial system. In contrast with

Section 3.3.1, we will see that the planner has two different incentives for bank i’s holding of cash.
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The first is identical – bank i stands to lose wealth if their project fails. The second incentive is

systemic – other banks face losses on their interbank claims upon the very same event. Therefore,

we expect the planner to have stronger incentives to hold cash, and elect for a greater supply of

liquidity within the system.

We assume that the planner seeks to maximize the total welfare in the system – defined as the

sum of all banks’ utilities. Their value function is therefore given by the following:

V (t, x1, ..., xn) = sup
(c··,w

··
· )∈At,T

E

[
n∑

i=1

Ui(X
i
T )

∣∣∣∣∣(X
1
t , . . . X

n
t ) = (x1, . . . xn)

]
, (3.8)

where At,T =
∏

i Ai
t,T is the Cartesian product of each bank’s admissible controls.

Remark 3.3. It is important to note that there are many possible ‘social welfare functions’ for the

planner to consider. In this section, we will see that using the sum of utilities allows for separable

solutions to the value function when all banks have logarithmic utility, i.e. γi = 1 for all i. We note

that if the planner maximized the product of utilities, then we can also find an explicit solution and

optimal controls in the case where γi ∈ (0, 1) for all i, but we omit these calculations for conciseness.

Notice that we can relate the planner’s value function to those of individual banks from (3.4). The

optimal decentralized allocation from Section 3.3.1 is always feasible for the planner, and therefore

their value function is bounded from below by the sum of each bank’s value function as follows:

V (t, x1, ..., xn) ≥
n∑

i=1

Vi(t, xi). (3.9)

This inequality reflects an inefficiency of the decentralized setting; the planner’s allocation is the

first-best (i.e. welfare-maximizing) outcome for the system. In what follows, we analyze the plan-

ner’s optimal allocation by deriving the dynamic programming equation and analyzing the resulting

optimization problem. As in the previous section, we first derive the non-local (PDE) solved by the

planner’s value function.

Proposition 3.4. If there exist optimal controls, and the value function in (3.8) is

C1,1,...,1([0, T ),R+, ...,R+), then it solves

0 = ∂tV + sup
c·,w··

{
n∑

i=1

(
(1− ci) r +

∑

j ̸=i

wijµj +
ηiµi

ϕi


xi∂xi

V

+ θiF̄i(ci)
[
V (t, x1(1− ϕiw1i), .., xi(1− ηi), .., xn(1− ϕiwni))− V

])}
,

(3.10)
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with terminal condition V (T, x1, .., xn) =
∑n

i=1 Ui(xi). Where unspecified, the value function and

its derivatives are evaluated at (t, x1, ..., xn).

The proof of this result is only a minor adaptation to the proof of Proposition 3.1, and can be

found in Appendix 3.A.2.

Proposition 3.4 yields an n+1 dimensional non-local PDE for the planner’s value function. There

is one key difference between Equations (3.10) and (3.5) – when a project fails, the planner’s value

function is affected by losses occurring throughout the entire financial system. This is not true in the

decentralized setting; an individual bank’s value function only depends on their own losses incurred

by such a failure.

With specific choices of utility functions, it is possible to find a separable solution to (3.10),

and prove existence of an optimal allocation. However, to establish uniqueness, we will need the

following technical assumption.

Assumption 3.4. Let each shock density fi(·) satisfy

fi(c)

F̄i(c)
+ 3

f ′i(c)

fi(c)
− f ′′i (c)

f ′i(c)
< 0, ∀c ≥ 0. (3.11)

and, with the notation c̃i = F−1
i

(î
1− µi

ϕiθi

ó
+

)
, assume that the following holds for all i

Γ(ηi; 1) >





min
{
(n− 1)

[
log
Ä
ϕiθi
µi

ä
− fi(0)

2

f ′
i(0)

]
, r

θifi(0)
+ (n− 1) log

Ä
ϕiθi
µi

ä}
if c̃i = 0

min
{
−(n− 1)ϕiθifi(c̃i)

2

µif ′
i(c̃i)

, r
θifi(c̃i)

}
otherwise.

(3.12)

Assumption 3.4 is sufficient for uniqueness of the planner’s the optimal allocation. While we have

numerically observed that the optimal solution is almost always unique, the optimization problem

in (3.10) is (generally) not convex, and therefore proving uniqueness is non-trivial. We do, however,

note that the inequality (3.11) is always satisfied by exponential and power distributions.

Analogous to Section 3.3.1, we show there exists a separable solution to the PDE (3.10). Addi-

tionally, we show that the optimal solution will solve a system of algebraic equations.

Proposition 3.5. Let each bank have a logarithmic utility function (i.e. γi = 1 ∀i). Then, there

exist optimal cash and lending amounts for the planner, which solve the following system of equations:
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c∗i =





f−1
i

Å
r

θi[Γ(ηi;1)+(n−1)Γ(ϕiw∗
·i;1)]

ã
if fi(0) ≤ r

θi[Γ(ηi;1)+(n−1)Γ(ϕiw∗
·i;1)]

0 otherwise,

w∗
·i =





1
ϕi

Ä
1− ϕiθiF̄i(c

∗
i )

µi

ä
if ϕiθiF̄i(c

∗
i )

µi
≤ 1

0 otherwise.

(3.13)

Letting c∗i and w∗
·i be the optimal allocation, we define

J∗
C =

n∑

i=1

( ï
(1− c∗i ) r + (n− 1)w∗

·iµi +
ηiµi

ϕi

ò
− θiF̄i(c

∗
i )
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw

∗
·i; 1)

])
,

and g(t) = (T − t)J∗
C . The solution to (3.10) is given by

V (t, x1, . . . , xn) = g(t) +

n∑

i=1

log xi. (3.14)

Furthermore, under Assumption 3.4, the optimal cash and lending amounts (c∗i , w
∗
·i) are unique.

The proof is again given in Appendix 3.A.2. We note that a separable solution using logarithmic

utility functions is only possible because the planner aims to maximize the sum of expected utilities.

See Remark 3.3 for a brief discussion of other settings where a separable solution can be obtained.

In contrast to the decentralized setting, the maximization in (3.10) is not additively separable

between each optimization variable. Nonetheless, each of the i subsets {ci, w1i...wni}, i = 1...n can

be analyzed separately, which greatly simplifies our analysis. However, the coupling between ci and

w·i leads to the need for additional assumptions to establish uniqueness.

The system of equations in (3.13) admits a block coordinate descent approach. Namely, for any

fixed ci, the maximization problem for w·i is strictly concave and admits a unique solution (these

can be seen in the proof of Proposition 3.5). Conversely, for given values of w·i, the maximizing

of ci shares these features. As a result, we can iteratively update these variables to solve for the

planner’s optimum numerically. Upon convergence, we are guaranteed to have found the unique

optimal allocation.

Since we have shown existence of an optimal allocation, and the proposed solution in (3.14) is

continuously differentiable, then we are able to verify that it is indeed equal to the planner’s value

function.

Corollary 3.6. The planner’s value function in (3.8) is given by (3.14). Furthermore, the optimal
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interbank lending and cash amounts solve (3.7).

Analysis of Centralized Optimum

There is one main difference between the system of equations in (3.13) and the optimal solutions

in (3.7) obtained from the decentralized setting. Here, we have an additional term of (n−1)Γ(ϕiw
∗
·i; 1)

that influences the planner’s optimal value for c∗i . This term directly captures the externality – when

i’s project fails, the planner sees losses in utility experienced by all banks. As a result, with more

banks the planner maintains a larger supply of cash to compensate for greater systemic losses. In

contrast, bank i’s decentralized optimization problem considers only changes to their own wealth,

and therefore their optimal ĉi will be indifferent to the system’s size.

Since we will have w∗
·i ≥ 0 in (3.13), the planner has a greater incentive to hold liquidity than

the individual bank.5 Hence, the planner will hold more liquidity than the decentralized optimal

allocation – we will study this difference more closely in the following section. Finally, we also notice

that given the amounts of cash held, the optimal investments w∗
·· and ŵ·· are computed identically.

It follows that any differences between the optimal interbank lending amounts in (3.7) and (3.13)

can only be driven by differences in optimal cash supplies.

3.4 Price of Anarchy

It is natural to compare the two optimal allocations from Sections 3.3.1 and 3.3.2. In particular,

we may be interested in computing the gap in welfare from the inequality (3.9). More generally,

in simulations we see stark differences between the two optimal allocations. Figure 4 illustrates a

sample path for the wealth of three banks, where in 4a the controls are given by (3.7), and in 4b

by (3.13). Qualitatively, there are higher-frequency jumps in 4a, but the jumps are of larger size

in 4b. With the remainder of this section, we study these differences more precisely.

In what follows, we will assume that all banks have logarithmic utility (i.e. γi = 1 for all i).

Recall that ĉi, ŵji denote the optimal decentralized allocations given in (3.7). Note that for all

j, k ̸= i we will have ŵki = ŵji, so we will denote these fractional amounts to be ŵ·i (this follows

from γj = 1 for all j). Additionally, recall that c∗i , w∗
·i denotes the optimal solution from (3.13).

Finally, we use the asymptotic notation g(n) = Θ(h(n)) to denote that there exist positive constants

A1, A2 such that A1 ≤ limn→∞
g(n)
h(n) ≤ A2. If A1 = A2, then we will write g(n) ≍ h(n).

5This observation may not be the case if, for example, short-selling were allowed. Qualitatively, the planner may
choose to have a single bank i hold zero cash, while others in the system maintain large, short positions in i’s project.
In this case, the total utility of the system may actually increase when bank i’s project fails. However, clearly this
result may not align with the best outcome for bank i itself.
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(b) Centralized

Figure 4: An example of wealth dynamics under the both optimal allocations for a system of
n = 3 banks. The same random seed is used in both simulations, so that the size and arrival
times of liquidity shocks are identical. For conciseness, we do not include the parameters, but
the code to reproduce these figures can be found here.

3.4.1 Liquidity Supply and Project Risk

Comparing the two optimal allocations, since w∗
·i ≥ 0, it will necessarily be the case that c∗i ≥ ĉi.

Our fundamental result establishes the asymptotic rate at which the planner’s optimal supply of

liquidity grows as the size of the system increases. More precisely, we show that for heavy-tailed

distributions, the planner’s supply of cash must grow at least logarithmically in the system size n

– and under stronger assumptions this lower bound is tight. In contrast, if w∗
·i = 0, then we would

have c∗i = ĉi – which is of constant order.

Proposition 3.7. Assume that w∗
·i > 0. If the shock density satisfies: fi(x) ≥ κi,Le

− x
λi,L , for all x

and fixed constants λi,L > 0 and κi,L > 0, then

c∗i ≥ λi,L log

Å
θiκi,LΓ(ϕiŵ·i; 1)

r

ã
+ λi,L log(n− 1).

In particular, the planner’s optimal cash supply asymptotically grows at least logarithmically in n.

Furthermore, if for all x we also have:

fi(x) ≤ κi,Ue
− x

λi,U

for λi,L ≤ λi,U and κi,L ≤ κi,U , then
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(i) Upper Bound:

c∗i ≤ λi,U log

Å
θiκi,UCU

r

ã
+ λi,U log ((n− 1) log(n)) ,

where CU > 3 depends on all model parameters (including λi,L and λi,U ), but does not explicitly

grow with n. As a result, limn→∞
c∗i

log(n) ≤ λi,U .

(ii) Lower Bound:

c∗i ≥ λi,L log

Å
θiκi,Lλi,L
rλi,U

ã
+ λi,L log

Å
(n− 1)

[
log(n− 1)− λi,U

λi,L
log (CL)

]ã
,

for CL > 0 depending only on i’s parameters. Hence, limn→∞
c∗i

log(n) ≥ λi,L.

Combining the two limiting bounds, we have c∗i = Θ
(
log(n)

)
.

The proof is provided in Appendix 3.A.3. It follows from iterating through upper (and lower)

bounds for c∗i using the system of equations in (3.13), and beginning from crude estimates.6

The following special case of Proposition 3.7 occurs when the shock sizes are exponentially

distributed.

Corollary 3.8. If Fi(x) = 1− e
− x

λi , then

λi log

Å
θi(n− 1)

λir

ï
log(n− 1)− log

Å
Γ(ηi; 1)

Γ(ϕiŵ·i; 1)

ãòã
≤ c∗i ≤ λi log

Å
θiCU (n− 1)

λir
log(n)

ã
.

In particular, c∗i ≍ λi log(n).

The proof follows from plugging in λi,L = λi,U = λi, and κi,L = κi,U = λ−1
i . Simplifying the

constant CL that appears in the lower bound yields the desired result.

Corollary 3.8 is a useful tool for comparing the two optimal allocations, as all differences are

driven by the distinct supply of liquidity. From here onward, we assume the setting of this Corollary,

wherein all shock sizes are exponentially distributed. First, we can directly compute the dependence

of project i’s likelihood of failure on the system size. We see that:

rλi
CU (n− 1) log(n)

≤ θiF̄i(c
∗
i ) ≤

rλi

(n− 1)
î
log(n− 1)− log

Ä
Γ(ηi;1)

Γ(ϕiŵ·i;1)

äó ,
6It is possible to use the same techniques in this proof to obtain bounds when the density has power-law tails.

While the results are not qualitatively different, we are unable to achieve the tight bound that appears in Corollary 3.8
when the shock distribution is itself a power-law. The main result can be seen in Appendix 3.B.
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and it follows that F̄i(c
∗
i ) = Θ

Ä
1

n log(n)

ä
.7 In stark contrast, the optimal intensity from the decen-

tralized setting, F̄i(ĉi), is constant in n. That is, F̄i(ĉi) = Θ(1). These two results will allow us to

analyze the price of anarchy.

3.4.2 Losses to Lending Banks

In addition to the supply of liquidity, the optimal investment amounts will differ between the two

settings. Due to the greater risk of jumps in the decentralized optimum, banks will invest less capital

into each others’ projects, and have a lesser degree of integration with the system. Hence, we are

also interested in comparing the losses experienced by lenders when i’s project fails.

First, we study the asymptotics of w∗
·i. Recalling that fi(·) is assumed to be exponential, having

already shown that the intensity F̄i(c
∗
i ) is of asymptotic order 1

n log(n) , (3.13) allows us to easily

compute:

w∗
·i =

1

ϕi
−Θ

Å
1

n log(n)

ã
.

Note that we must have w·i < ϕ−1
i to ensure wealth remains positive, yet we can still pin down the

rate at which the interbank investment approaches its upper bound.

Next, we are interested in the term Γ(ϕiw
∗
·i; 1) = − log (1− ϕiw

∗
·i), which represents the relative

loss of utility to a single lender when bank i’s project experiences a failure. A straightforward

computation using (3.6) gives

Γ(ϕiw
∗
·i; 1) = Θ

(
log(n log(n))

)
= Θ

(
log(n)

)
,

since log(n log(n))
log(n) →

n→∞
1.

Putting this result together with the asymptotic rate of F̄i(c
∗
i ), we see that

F̄i(c
∗
i )(n− 1)Γ(w∗

·i; 1) = Θ(1).

This is an interesting result, as it shows that the expected losses of utility due to a project’s failure do

not grow with the system size – in contrast, the decentralized setting exhibits F̄i(ĉi)(n−1)Γ(ŵ·i; 1) =

Θ(n). Namely, the planner perfectly compensates for larger expected losses in utility through its

reduction of a project’s failure probability.
7We can obtain similar bounds using only Proposition 3.7, but these will not be tight. In particular, we would

only show that F̄i(c
∗
i ) = O

(
(n log(n))

−
λi,L
λi,U

)
, and F̄i(c

∗
i ) = Ω

(
(n log(n))

−
λi,U
λi,L

)
.
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3.4.3 Price of Anarchy Asymptotics

We now turn to the gap between value functions from (3.9). It will be useful to have Mn denote

the set of banks that are lent a non-zero amount of capital in the planner’s optimal allocation, i.e.

Mn = {i ∈ [1..n] : w∗
·i > 0}. Banks in Mn form the ‘core’ of the financial network. If for some i

we have w∗
·i = 0, then it must be the case that c∗i = ĉi and ϕiθiF̄i(c

∗
i )

µi
> 1. For such a bank i, the

planner’s optimal c∗i would remain constant at ĉi, even as n grows.

The ‘price of anarchy’ reflects how greedy decentralized behavior leads to lesser welfare in the

system (Papadimitriou, 2001). In this model, we define it as

PoA =
V∑n
i=1 Vi

.

More precisely, the price of anarchy equals the relative loss in value between the centralized and

decentralized settings. In the following result, we characterize its asymptotic behavior.

Proposition 3.9. Assume that γi = 1 and Fi(x) = 1− e
− x

λi for all i. Then, as n→ ∞, we have

PoA = Θ(1).

The proof is found in Appendix 3.A.3, and uses all previous results from this Section.

It is particularly interesting that the price of anarchy does not grow with the system size n, or

the remaining time horizon (T − t). A more precise result can be obtained if banks are sufficiently

homogeneous, where we can compute the limiting price of anarchy.

Corollary 3.10. Assume that all banks in Mn are identical (i.e. µj = µ, ϕj = ϕ, θj = θ, ηj = η,

and λj = λ for some given constants µ, ϕ, θ, η and λ). If |Mn| →
n→∞

∞, then

Vi
|Mn|(T − t)

→
n→∞

µ

ϕ
+ θF̄ (ĉ))

ï
log

Å
ϕθF̄ (ĉ)

µ

ã
− 1

ò
, ∀i = 1...n

V

n|Mn|(T − t)
→

n→∞

µ

ϕ
.

where ĉ is given in (3.7) and F̄ (ĉ) = e−
ĉ
λ . As a result, we have:

PoA →
n→∞

1

1 + ϕθF̄ (ĉ)
µ

[
log
(

ϕθF̄ (ĉ)
µ

)
− 1
] . (3.15)
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Corollary 3.10 verifies that the price of anarchy is of constant order n, and the proof is found in

Appendix 3.A.3. Of particular interest, the rate at which |Mn| grows in n does not appear in our

result. This implies that the limiting price of anarchy is independent from the fraction of the system

that operates as its ‘core’. Notice also that ϕθF̄ (ĉ) < µ, and hence the right-hand side in (3.15) is

greater than one. Moreover, the limiting price of anarchy is increasing in ϕθF̄ (ĉ)
µ . Therefore, as the

profitability of interbank loans in the decentralized setting is reduced, the limiting price of anarchy

grows to infinity.

Corollary 3.10 is verified numerically. Using the parameters in Table 2, we compute the individual

and collective value functions. The price of anarchy is plotted in Figure 5, along with the limiting

value in (3.15). We see that the price of anarchy quickly converges to the limit.
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Figure 5: Simulating the Price of Anarchy for a sys-
tem of identical firms as n grows.

Notation Value Description

r 0.01 Risk-free rate

µ 0.045 Excess drift

ϕ 0.4 Losses to lenders

η 0.5 Losses to borrower

F (x) 1− e−λx CDF of shock size

λ 1 Parameter of F (·)

θ 0.1 Shock arrival rate

Table 2: System parameters used in simulations for
Figure 5. Code is available here.

3.4.4 Replicating the Centralized Allocation

Finally, we may be interested in studying how banks in the decentralized setting can be incentivized

to replicate the planner’s optimal allocation. To do so, we will allow the degree of each bank’s

investment into their own project, ηi, to vary. The rationale for this is twofold: first, ηi plays

the fundamental role in decentralized banks’ choice of how much cash to hold. If this value is

sufficiently large, banks will increase their supply of liquidity and therefore reduce their projects’

riskiness – which can lead them to meet the planner’s optimal allocation. Second, we can imagine

that lending banks are permitted to write a contract stipulating the borrowing bank’s degree of

co-investment. This kind of contracting is not a focus of our work, and is instead analyzed in more

detail with Principal-Agent problems such as Hernández Santibáñez et al. (2020). Nonetheless, the

co-investment contract can be designed to ensure that individual banks hold sufficient liquidity.
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Let ηCi (resp. ηDi ) denote the fraction of bank i’s wealth lost upon project failure in the centralized

(resp. decentralized) setting. We would like to choose ηDi so that decentralized banks replicate the

centralized optimum with values ηCi . More precisely, we seek to find ηDi solving c∗i (η
C
i ) = ĉi(η

D
i )

for all i, where we write the optimal controls in a way that highlights their dependence on the

underlying values of η. Even though the optimal allocations are identical, however, we note that

the decentralized optimum is still inefficient (with respect to the optimal centralized allocation

corresponding to ηDi ). Using equations (3.7) and (3.13), we find that:

ηDi = 1− (1− ηCi )
(
1− ϕiw

∗
·i(η

C
i )
)n−1

.

First, notice that whenever w∗
·i(η

C
i ) > 0, the resulting value of ηDi will grow exponentially in n

towards its upper bound of 1. This is intuitive – banks whose projects are highly invested in require

the strongest incentive to reduce their project’s risk. Second, we see that for banks to replicate the

planner’s optimum, it is necessary for bank i’s degree of co-investment to depend on their liabilities

throughout the system. It is therefore necessary to know the complete structure of the financial

network to determine the value of ηDi , which may not be known to individual lenders. Finally, an

interesting case occurs when we choose ηCi = 0. In this case, the value of ηDi is only non-zero if

w∗
·i(0) > 0. Namely, banks without counterparties hold no stake in their own projects.

3.5 Discussion and Conclusion

In this chapter, we present a model by which banks in a financial system control both their own

levels of risk, and their investment in each others’ risky projects.

We compute the uniquely optimal allocations of capital for two distinct organizations of the

system, and study their differences qualitatively and quantitatively. First, we analyze the setting

where each bank acts with pure self-interest. We compute explicitly the optimal allocation, and find

that the size of interbank investments are closely related to a Sharpe-like ratio – which is controlled by

borrowing banks. In particular, the optimal financial network exhibits a ‘core-periphery’ structure,

wherein only a subset of banks serve as borrowers. Second, we formulate the optimization problem

of a central planner, who seeks to maximize the total welfare in the system. Under a few technical

assumptions, we are able to prove the existence of a unique optimal allocation. In particular, we find

that the planner’s optimum exhibits low-frequency and high-severity events of distress, which aligns

with the ‘robust-yet-fragile’ feature observed by Gai and Kapadia (2010). The difference in these
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two optimal allocations is driven by a negative externality, where individual banks are excessively

risky given the potential losses that they may induce.

In the case where shocks are exponentially distributed, we can precisely compute how the exter-

nality’s severity depends on the system’s size. We see that the planner compensates for an increased

number of counterparties by reducing the risk of a bank’s project. The planner perfectly balances the

two effects, so that the expected losses in utility remain of constant order – regardless of the system

size. We are also able to see that the loss in welfare due to decentralized behavior grows with the

size of both the financial system and its core. However, and perhaps counterintuitively, the relative

loss of welfare, which we refer to as the price of anarchy, is of constant order. Finally, we show that

it is possible, through regulation or contracting between banks, to replicate the planner’s optimal

interbank allocation. Banks who have borrowed the largest amount of capital will be subjected to

the strictest requirements, and will therefore have the strongest incentive to reduce their project’s

riskiness. This highlights the danger of government bailouts, which can cause perverse incentives for

individual banks.

We believe there are several interesting continuations of this work. First, a notable limitation

of this model is that it does not contain a mechanism of contagion. For instance, Aït-Sahalia and

Hurd (2015) consider a portfolio optimization problem where assets’ jump components are self- and

mutually exciting. An immediate extension of our work may be to incorporate jump processes with

these features directly into the model. It may also be possible to show that self- and mutually

exciting jumps can endogenously emerge, e.g. if a lending bank suffers losses of liquidity when their

borrowers’ project fails. Additionally, financial crises are heavily destabilizing, and it is natural to

assume that it is challenging (or impossible) to quickly rebalance a portfolio in the wake of such an

event. Therefore, it is practical to prevent banks from instantaneously re-weighting their portfolios.

This feature may lead to further inefficiencies caused by banks’ inability to establish an optimal

allocation of wealth shortly after a shock occurs. Furthermore, our model differs from the literature

on strategic network formation in that creating a ‘lending linkage’ to another bank is costless. It

is natural to incorporate these costs into banks’ optimization problems, for example, as the cost

of performing due diligence on a borrower to assess their creditworthiness. Finally, the inclusion

of intermediary costs or more sophisticated contracting mechanisms between banks presents a rich

direction of future research.
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Appendices

3.A Proofs

3.A.1 Decentralized Network

Proof of Proposition 3.1. First, we use the dynamic programming principle to consider only the

optimal control over the time interval [t, τ ], for a stopping time τ < T to be defined later. We can

write the value function recursively as

Vi(t, x) = sup
(ci· ,w

i·
· )∈Ai

t,T

E
[
Vi
(
τ,Xi

τ

) ∣∣∣Xi
t = x

]
, (3.16)

which holds for all t < T and τ ≤ T .

Next, we for each bank k we fix some admissible control (ck· , wk·
· ) ∈ Ak

t,T . By assumption, Vi

is once differentiable in both time and space, and using Itô’s formula (see for instance Cont and

Tankov (2003)) we can write:

Vi
(
τ,Xi

τ

)
− Vi

(
t,Xi

t

)
=

∫ τ

t

[
∂tVi(s,X

i
s) + ∂xVi

(
s,Xi

s

)
bi(c

i
s, w

i·
s )X

i
s

]
ds

+

n∑

j=1

∫ τ

t

[
Vi
(
s,Xi

s

)
− Vi

(
s,Xi

s−
)]
dN j

s .
(3.17)

where bi(cit, wi·
t ) is the coefficient on the dt term in (3.2).

Recall that the jump process N j
t has instantaneous intensity θjF̄j(c

j
t ). Therefore, the compen-

sated process M j
t = N j

t −
∫ t

0
θjF̄j(c

j
s)ds is a martingale. Rewriting the integrals in (3.17) in terms

of dM j
t and taking expectation conditioned on Xi

t = x (denoted Et,x) of both sides yields:
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Et,x

[
Vi
(
τ,Xi

τ

)]
− Vi

(
t,Xi

t

)
= Et,x

[∫ τ

t

Lcis,w
i·
s Vi(s,X

i
s−)ds

]

+ Et,x

ï∫ τ

t

[
Vi
(
s,Xi

s− − ηiX
i
s−
)
− Vi

(
s,Xi

s−
)]
dM i

s

ò
+
∑

j ̸=i

Et,x

ï∫ τ

t

[
Vi
(
s,Xi

s− − ϕjw
ij
s X

i
s−
)
− Vi

(
s,Xi

s−
)]
dM i

s

ò
,

(3.18)

where the generator Lci,wi· is defined to be

Lci,wi·ψ(t, x) = ∂tψ(t, x) +

Ñ
(1− ci)r +

∑

j ̸=i

wijµj +
ηiµi

ϕi

é
x∂xψ

+ θi (1− Fi(ci))
[
ψ(t, x(1− ηi))− ψ(t, x)

]

+
∑

j ̸=i

θj (1− Fj(cj))
[
ψ(t, x(1− ϕjwij))− ψ(t, x)

]
,

(3.19)

for any ψ ∈ C1,1([0, T ),R+).

Next, we need to show that the expectation of the stochastic integrals with respect to dMk
s are

equal to zero. To do so, it is sufficient to have the integrand bounded for s ∈ [t, τ ]. Define the

stopping time τ to be:

τ = (t+ δ) ∧ inf

ß
s ∈ [t, T ], Xi

s ≤ ϵ or Xi
s ≥

1

ϵ

™
, (3.20)

for some small δ > 0 and ϵ > 0. Then, since Xi
s is bounded away from zero in [t, τ ], the size in

the jump of the value function is bounded. Therefore the stochastic integrals in (3.18) have zero

expectation. We obtain:

Et,x

[
Vi
(
τ,Xi

τ

)]
− Vi

(
t,Xi

t

)
= Et,x

[∫ τ

t

Lcis,w
i·
s Vi(s,X

i
s−)ds

]
.

Take the supremum on both sides over the admissible controls (ci· , w
i·
· ) ∈ Ai

t,T . Recall that the

dynamic programming principle in (3.16) implies that for any stopping time τ , we have
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sup
(ci· ,w

i·
· )∈Ai

t,τ

Et,x

[
Vi
(
τ,Xi

τ

)]
= Vi

(
t,Xi

t

)
.

Therefore, we arrive at:

0 = sup
(ci· ,w

i·
· )∈Ai

t,τ

Et,x

[∫ τ

t

Lcis,w
i·
s Vi(s,X

i
s−)ds

]
. (3.21)

We note that this step required existence of an optimal control. For small enough δ and ϵ

in (3.20), we will have τ = t+ δ. Therefore, (3.21) yields

0 = sup
(ci· ,w

i·
· )

lim
δ→0

1

δ
Et,x

[∫ t+δ

t

Lcis,w
i·
s Vi(s,X

i
s−)ds

]
.

Finally, applying the Dominated Convergence Theorem gives

0 = sup
(ci· ,w

i·
· )

Lci,wi·Vi(t, x),

which equals (3.5) after plugging in the definition of Lci,wi· from (3.19).

Proof of Proposition 3.2. Both parts of this Proposition are proved nearly identically. For concise-

ness, full detail is only provided for case (i) where γi = 1.

(i): We first show that (3.5) has a separable solution. Next, the internal optimization problem is

shown to be convex, and its objective function strictly concave. Finally, we show that the proposed

solution is optimal.

Separability of the PDE: First we show the value function is separable. Plugging the ansatz

Vi(t, x) = gi(t) + log x into (3.5) and performing some simplification, we have:

0 = g′i(t)+ sup
ci,wi·



(1− ci) r +

∑
j ̸=i

wijµj +
ηiµi

ϕi
+ θiF̄i(ci) log

(x− ηix

x

)∑
j ̸=i

θjF̄j(cj) log

Å
x− ϕjwijx

x

ã
 .

Observe we can cancel out all remaining x’s, and obtain the following ODE for gi:
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0 = g′i(t)+
ηiµi

ϕi
+ sup

ci,wi·



(1− ci)r +

∑
j ̸=i

wijµj + θiF̄i(ci) log(1− ηi) +
∑
j ̸=i

θjF̄j(cj) log(1− ϕjwij)



 (3.22)

with terminal condition gi(T ) = 0. If ĉi and ŵij are indeed the optimal solutions to the maximization

in (3.22), gi solves g′i(t) = −J∗
i with gi(T ) = 0, to which the solution is gi(t) = (T − t)J∗

i as desired.

Strict Concavity: Now we analyze the resulting optimization problem for ci, wi·. Let Ai =

R+ ×
∏

j ̸=i[0, ϕ
−1
j ) be the feasible set for this optimization problem. Clearly, Ai is a convex set. We

aim to solve

sup
(ci,wi·)∈Ai

(1− ci)r +
∑

j ̸=i

wijµj + θiF̄i(ci) log(1− ηi) +
∑

j ̸=i

θjF̄j(cj) log(1− ϕjwij). (3.23)

Let h(ci, wi·) denote the function to be maximized in (3.23). It is critical to observe that h is

additively separable in each of its optimization variables. Therefore, we can solve for each optimal

control independently. Namely, all cross-derivatives of h equal zero, which greatly simplifies the proof

of strict concavity. We begin by computing partial derivatives of h with respect to each variable,

which gives

∂h

∂ci
= −r − θifi(ci) log(1− ηi)

∂2h

∂c2i
= −θif ′i(ci) log(1− ηi)

∂h

∂wij
= µj − ϕjθj

F̄j(cj)

1− ϕjwij

∂2h

∂w2
ij

= −ϕ2jθj
F̄j(cj)

(1− ϕjwij)2
∀j ̸= i.

(3.24)

Observe that within Ai, we have (1 − ϕjwij)
2 > 0. Recall that by Assumption 3.1, the density

function fj(·) is fully supported on R+, and f ′i(·) < 0. Therefore, it must be the case that F̄j(cj) > 0

for any admissible cj and ∂2wij ,wij
h < 0. Additionally, ∂2ci,cih < 0 because ηj > 0.

As a result, the Hessian matrix of the objective function is negative definite in the feasible region,

i.e. ∇2h ≺ 0 everywhere in Ai. Hence h is a strictly concave function; if an optimal solution to

problem (3.23) exists, it is unique (Boyd and Vandenberghe, 2004).

Optimality of Given Solution: To conclude, we must prove that (3.7) is optimal for bank i.

Note that −r
θi log(1−ηi)

> 0. Since fi is monotonically decreasing and positive valued on R+, its

inverse f−1
i

Ä
−r

θi log(1−ηi)

ä
is well-defined if and only if −r

θi log(1−ηi)
≤ fi(0).
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Since optimization problem (3.23) is convex, the first-order condition for constrained optimization

is sufficient. We need only check that y∗ = (ĉi, w
∗
i·) ∈ Ai satisfies

∇h(y∗)T (y − y∗) ≤ 0, ∀y ∈ Ai.

The optimization problem for h is additively separable, so this condition is equivalent to the following.

∂cih(ĉi)(ci − ĉi) ≤ 0, ∀ci ∈ R+,

∂wijh(ŵij)(wij − ŵij) ≤ 0, ∀wij ∈
î
0, ϕ−1

j

ä
, ∀j ̸= i.

(3.25)

Note that the partial derivative ∂cih in (3.24) is a function of only ci. The same holds for the

partials with respect to each wij . Note that these derivatives will depend on cj , but this value is

not controlled by bank i. Therefore, we will omit the dependence of these derivatives on the other

optimization variables.

We begin with optimality of the proposed ĉi. Consider the case where −r
θi log(1−ηi)

≤ fi(0), and

observe that ∂cih(ĉi) = 0 using (3.24). As a result, this choice of ĉi satisfies the first-order condition

for ĉi in (3.25). Conversely, let us have −r
θi log(1−ηi)

> fi(0). Since fi is assumed to be monotone

decreasing, it must be the case that −r
θi log(1−ηi)

> maxc∈R+
fi(c). Using again (3.24), we obtain

that ∂cih(c) < 0 for every c ∈ R+. In particular, we will have ∂cih(0) < 0, and the first-order

condition (3.25) is satisfied by ĉi = 0. The proof of optimality for ŵij in (3.7) follows exactly the

same steps. If it is non-zero, then the proposed value solves ∂wij
h(ŵij) = 0. If not, then we know

that this partial derivative is negative everywhere in the feasible region for wij . Choosing ŵij = 0

satisfies the corresponding equation in (3.25).

Concluding, we have shown that the solution given in (3.7) satisfies (3.25). Since it lies within

Ai, it is optimal for problem (3.23). Recall that strict concavity provides uniqueness of this solution.

Finally, since all banks optimize concurrently, (3.7) is obtained by plugging the optimal value c∗j into

ŵij .

(ii): The proof of this result will largely mirror that of part (i). We first check separability of

the PDE. If Vi(t, x) = gi(t)
x1−γi

1−γi
, then we have:
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∂tVi(t, x) = g′i(t)
x1−γi

1− γi

∂xVi(t, x) = gi(t)
x1−γi

x

Vi(t, (1− c)x) = gi(t)
x1−γi

1− γi
(1− c)1−γi , ∀c < 1.

Plugging these expressions into (3.5) and dividing by x1−γi removes any spatial variables, and we

are left with the following ordinary differential equation for gi.

0 =
g′i(t)

1− γi
+ gi(t) sup

ci,wi·

{
(1− ci)r +

∑

j ̸=i

wijµj +
ηiµi

ϕi
+ θiF̄i(ci)

(1− ηi)
1−γi − 1

1− γi

+
∑

j ̸=i

θjF̄j(cj)
(1− ϕjwij)

1−γi − 1

1− γi

}

gi(T ) = 1.

Let ĉi and ŵij be the optimal solutions to the maximization. Then we see that gi will solve

g′i(t) = −(1− γi)J
∗
i gi(t) with gi(T ) = 1, whose solution is gi(t) = exp((1− γi)(T − t)J∗

i ).

The optimality and uniqueness of the solution in (3.7) will be proved analogously to part (i), but

by analyzing a different objective function. We are now interested in:

sup
(ci,wi·)∈Ai

(1− ci)r +
∑

j ̸=i

wijµj + θiF̄i(ci)
(1− ηi)

1−γi − 1

1− γi
+
∑

j ̸=i

θjF̄j(cj)
(1− ϕjwij)

1−γi − 1

1− γi

Again, this optimization problem is additively separable, which will simplify the proof of strict

concavity. As before, let h(ci, wi·) denote the function to be maximized. We compute its partial

derivatives to be:

∂h

∂ci
= −r − θifi(ci)

(1− ηi)
1−γi − 1

1− γi

∂2h

∂c2i
= −θif ′i(ci)

(1− ηi)
1−γi − 1

1− γi

∂h

∂wij
= µj − ϕjθjF̄j(cj)(1− ϕjwij)

−γi
∂2h

∂w2
ij

= ϕ2jθjF̄j(cj)(−γi)(1− ϕjwij)
−γi−1

Under Assumption 3.1, we will have both ∂2ci,cih < 0 and ∂2wij ,wij
h < 0, since wij < ϕ−1

j

everywhere in Ai. Therefore, h is strictly concave on Ai and the optimization problem is convex.
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As a result, any optimal solution must be unique.

The remaining part of the proof mirrors that of part (i). Computing the gradient of h at the

candidate solution in (3.7) and using the same argument will show that the first-order conditions

in (3.25) are satisfied. Since this point is feasible, it must be optimal.

Proof of Corollary 3.3. We proceed with a standard verification argument. We need to show that

if ψ is a solution to the PDE (3.5) and it is C1,1 ([0, T ),R+), then it is equal to the value function.

Since the proposed solutions solve the PDE and they are indeed C1,1, this will conclude.

Fix t < T , and choose {cis, wi·
s }s∈[t,T ] be some admissible controls. We apply Itô’s formula to

ψ(s,Xi
s) between t and some stopping time τn – to be chosen optimally later. This yields, using the

notation introduced in the proof of Proposition 3.1, the following:

ψ(τn, Xi
τn) = ψ(t,Xi

t) +

∫ τn

t

Lcis,w
i·
s ψ(s,Xi

s)ds+

∫ τn

t

[
ψ
(
s,Xi

s− − ηiX
i
s−
)
− ψ

(
s,Xi

s−
)]
dM i

s

+
∑

j ̸=i

∫ τn

t

[
ψ
(
s,Xi

s− − ϕjw
ij
s X

i
s−
)
− ψ

(
s,Xi

s−
)]
dM j

s .

Recall that the compensated jump process
{
Mk

t

}
t≥0

is a martingale. Taking the expectation con-

ditioned on Xi
t = x, we obtain:

Et,x

[
ψ(τn, Xi

τn)
]
= ψ(t, x) + Et,x

ñ∫ τn

t

Lcis,w
i·
s ψ(s,Xi

s)ds

ô
+ Et,x

ñ∫ τn

t

[
ψ
(
s,Xi

s− − ηiX
i
s−
)
− ψ

(
s,Xi

s−
)]
dM i

s

ô
+
∑

j ̸=i

Et,x

ñ∫ τn

t

[
ψ
(
s,Xi

s− − ϕjw
ij
s X

i
s−
)
− ψ

(
s,Xi

s−
)]
dM j

s

ô
.

If we choose τn =
(
T − 1

n

)
∧ inf

{
s ∈ [t, T ], Xi

s ≤ 1
n or Xi

s ≥ n
}
, then for every n the expectation

of each stochastic integral is zero and we have:

Et,x

[
ψ(τn, Xi

τn)
]
= ψ(t, x) + Et,x

ñ∫ τn

t

Lcis,w
i·
s ψ(s,Xi

s)ds

ô
.

Taking the limit as n → ∞, we will have τn → T . Furthermore, since ψ satisfies the terminal

condition (by assumption) and everything is bounded, an application of dominated convergence

yields:
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Et,x

[
Ui(X

i
T )
]
= ψ(t, x) + Et,x

ñ∫ T

t

Lcis,w
i·
s ψ(s,Xi

s)ds

ô
. (3.26)

First, we choose the controls in (3.26) to be given by the optimal solution of Proposition 3.2.

Then, we will have Lĉis,ŵ
i·
s ψ(s,Xi

s) = 0 for all s ∈ [t, τn], and consequentially:

ψ(t, x) = Et,x

[
Ui(X

i
T )
]
.

Note that only the terminal wealth Xi
T in the right-hand side depends on the controls (ĉis, ŵi·

s ). After

taking the supremum we obtain

ψ(t, x) ≤ sup
{cis,wi·

s }
s∈[t,T ]

Et,x

[
Ui(X

i
T )
]
= Vi(t, x). (3.27)

Next, we fix any control (cis, wi·
s ). Then, in (3.26) we will have Lcis,w

i·
s ψ(s,Xi

s) ≤ 0, and the result

is:

ψ(t, x) ≥ Et,x

[
Ui(X

i
T )
]
.

Note again that only Xi
T depends on the controls. However, since this inequality holds for any

admissible control we can take the supremum over both sides to give

ψ(t, x) ≥ sup
{cis,wi·

s }
s∈[t,T ]

Et,x

[
Ui(X

i
T )
]
= Vi(t, x). (3.28)

Combining (3.27) and (3.28) shows that ψ = Vi. This implies that the optimal values to the

maximization problem in the PDE for ψ are indeed the optimal controls.

Since the explicit solutions given by Proposition 3.2 are once continuously differentiable in both

time and space, then they are equal to the value function.

3.A.2 Centralized Network

Proof of Proposition 3.4. This proof is only a minor adaptation of the proof of Proposition 3.1.

First, the application of Itô’s formula to the value function V (t,X1
t , . . . , X

n
t ) yields more terms,

but remains simple as the jump processes are mutually independent. Namely, the generator is given

by
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Lc·,w··ψ = ∂tψ +

n∑

i=1

(
(1− ci)r +

∑

j ̸=i

wijµj +
ηiµi

ϕi


xi∂xi

ψ

+ θiF̄i(ci)
[
ψ(t, x1(1− ϕiw1i), ..., xi(1− ηi), ..., xn(1− ϕiwni))− ψ

])
,

where ψ is evaluated at (t, x1, ..., xn) where unspecified.

Next, to apply dominated convergence, the choice of the stopping time τ must ensure that all

stopped processes X1
τ , . . . X

n
τ are bounded away from zero. We can therefore choose:

τ = (t+ δ) ∧min
i

ß
inf

ß
s ∈ [t, T ], Xi

s ≤ ϵ or Xi
s ≥

1

ϵ

™™
,

and conclude as in the previous result.

Proof of Proposition 3.5. The outline of this proof is similar to that of Prop. 3.2, but with greater

complexity, and hence requiring additional assumptions to establish our results. We begin by dis-

cussing each of these.

First, logarithmic utility functions are needed so that (3.10) admits a separable solution. We

note that if the planner sought to maximize the product of banks’ utilities, it would be necessary to

assume that γi ̸= 1 for all i. This assumption is used for existence of a separable solution to (3.10).

The first condition in Assumption 3.4 concerns the shock densities fi. In particular, (3.11) is

satisfied by the family of exponential distributions (fi(x) = λ−1
i e

− x
λi , for some parameter λi > 0)

and power distributions
(
fi(x) =

(α−1
i −1)x

α
−1
i

−1

0

(x+x0)
α
−1
i

, for any x0 > 0 and αi < 1
)
. We note that this

condition is not necessary for uniqueness, but is used for establishing monotonicity of a first-order

condition for optimality by bounding the second derivative with an exponentially decaying function.

Finally, the inequalities on Γ(ηi; 1) will ensure that either (i): strict concavity of the objective

function holds, or (ii) there exists only a single solution to the necessary first-order conditions.

However, these inequalities do not rule out the possibility of a corner solution of c∗i = 0 or w∗
·i = 0 –

as shown in (3.13). Of particular interest, the optimal decentralized and centralized allocations for

ci and w·i will coincide whenever either c∗i = 0 or w∗
·i = 0 in the planner’s optimum.

Separability of PDE and Maximization: Recall that the PDE for the value function derived

in Proposition 3.4 is:

80



0 = ∂tV + sup
c·,w··

{
n∑

i=1

(
(1− ci) r +

∑

j ̸=i

wijµj +
ηiµi

ϕi


xi∂xi

V

+ θiF̄i(ci)
[
V (t, x1(1− ϕiw1i), .., xi(1− ηi), .., xn(1− ϕiwni))− V

])}

V (T, x1, ..., xn) =

n∑

i=1

Ui(xi).

(3.29)

By assumption, each bank’s utility function is given by Ui(xi) = log xi, i.e. γi = 1 for all i. Consider

the following ansatz: V (t, x1, .., xn) = g(t) +
∑

i log xi. Substituting into (3.29), we obtain:

0 = g′(t) + sup
c·,w··

n∑

i=1

(1− ci) r +
∑

j ̸=i

wijµj +
ηiµi

ϕi
− θiF̄i(ci)


Γ(ηi; 1) +

∑

j ̸=i

Γ(ϕiwji; 1)


 (3.30)

with g(T ) = 0. The spatial variables will cancel and we are left with an ordinary differential equation

for g. We now rewrite the following sum:

n∑

i=1

∑

j ̸=i

wijµj =

n∑

i=1

∑

j ̸=i

wjiµi.

Observe that for k, j ̸= i, we will have wji = wki. That is, all j ̸= i banks will lend the same

fraction of their wealth to bank i.8 Let this fraction be denoted by w·i. This allows us to further

simplify (3.30) and obtain

0 = g′(t) +

n∑

i=1

ηiµi

ϕi
+ sup

c·,w··

n∑

i=1

(1− ci) r + (n− 1)w·iµi − θiF̄i(ci)
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw·i; 1)

]
.

This maximization is additively separable between each pair (ci, w·i), indexed by i. Let Ai =

R+ × [0, ϕ−1
i ) denote the admissible values for (ci, w·i). Then, the optimal allocation is found by

solving:

n∑

i=1

sup
(ci,w·i)∈Ai

hi(ci, w·i), (3.31)

8This can be seen in two ways. First, in the decentralized setting, the amount wji depended on bank j only
through their risk aversion coefficient γj . Since in this Proposition we have assumed that γi = 1 for all i, the result
follows. This can also be seen by computing the first-order conditions in (3.30) for wji and wki, and noticing that
they are identical.
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where hi(ci, w·i) = −rci + (n− 1)µiw·i − θiF̄i(ci)
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw·i; 1)

]
for each i.

Reduction to Univariate Optimization: We first maximize over w·i and then ci given the

optimal w·i. Given a value of ci, we seek to find the optimal value of w·i. We can compute

∂hi
∂w·i

(ci, w·i) = (n− 1)µi − (n− 1)
ϕiθiF̄i(ci)

1− ϕiw·i

∂2hi
∂w2

·i
(ci, w·i) = −(n− 1)

ϕ2i θiF̄i(ci)

(1− ϕiw·i)2
.

(3.32)

Notice that the second derivative in this expression is always strictly negative. Hence, given ci, the

optimization problem over w·i is strictly concave. This implies that the first-order conditions are

sufficient, and that any optimal solution is unique. Let w∗
·i(ci) denote the optimal solution given ci.

It must satisfy the following necessary first-order condition:

∂hi
∂w·i

(ci, w
∗
·i(ci))(w·i − w∗

·i(ci)) ≤ 0, ∀w·i ∈ [0, ϕ−1
i ).

Using (3.32), it is easy to check that this condition is satisfied by the following:

w∗
·i(ci) =





1
ϕi

Ä
1− ϕiθiF̄i(ci)

µi

ä
if ϕiθiF̄i(ci)

µi
≤ 1

0 otherwise.
(3.33)

This value is uniquely defined, and exists for any choice of ci. We then rewrite each maximization

in (3.31) as

sup
(ci,w·i)∈Ai

hi(ci, w·i) = sup
ci≥0

h∗i (ci), (3.34)

where h∗i (ci) = hi(ci, w
∗
·i(ci)).

Existence of an Optimal Solution: We now prove existence of an optimal solution to (3.34).

Observe that for large enough ci, we will have w∗
·i(ci) =

1
ϕi

Ä
1− ϕiθiF̄i(ci)

µi

ä
. For such ci we obtain

h∗i (ci) =− rci + (n− 1)µi

ï
1

ϕi

Å
1− ϕiθiF̄i(ci)

µi

ãò
− θiF̄i(ci)

ï
Γ(ηi; 1)− (n− 1) log

Å
ϕiθiF̄i(ci)

µi

ãò
.
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As ci → ∞, we will have F̄i(ci) → 0. Since we can write

F̄i(ci) log

Å
ϕiθiF̄i(ci)

µi

ã
= F̄i(ci)

ï
log

Å
ϕiθi
µi

ã
+ log F̄i(ci)

ò
,

and x log x →
x→0

0, we will have limci→∞ h∗i (ci) = −∞.

This limit is sufficient for existence of an optimal solution to (3.34). Fix some K < 0. Since we

have shown h∗i (ci) →
ci→∞

−∞, we know that ∃C ∈ R+ : h∗i (ci) < K, ∀ci > C. By continuity of h∗i ,

the set B = {ci ∈ R+ : h∗i (ci) ≥ K} is compact. We can conclude by the Extreme Value Theorem

that there exists a globally optimal value of h∗i within B. Moreover, as long as B is non-empty, any

point in B achieves higher objective value than any point in its compliment. By taking K to be a

large enough negative number, we can ensure that B ̸= ∅.

System of Equations for Optimum: The expression (3.33) gives us the second equation in the

system (3.13). For the other equation, we must analyze the first-order condition for ci in (3.31).

Taking derivatives with respect to ci, we obtain

∂hi
∂ci

(ci, w·i) = −r + θifi(ci)
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw·i; 1)

]

∂2hi
∂c2i

(ci, w·i) = −θif ′i(ci)
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw·i; 1)

]
.

(3.35)

Notice that the second derivative is also negative everywhere – although this does not imply that

the objective function hi is concave. We proceed similarly as before, seeking to define an optimal

value of ci for any given w·i. Let this be denoted c∗i (w·i). It must satisfy:

∂hi
∂ci

(c∗i (w·i), w·i)(ci − c∗i (w·i)) ≤ 0, ∀ci ∈ R+.

Using (3.35), we can see that this will be satisfied whenever

c∗i (w·i) =





f−1
i

Ä
r

θi[Γ(ηi;1)+(n−1)Γ(ϕiw·i;1)]

ä
if fi(0) ≤ r

θi[Γ(ηi;1)+(n−1)Γ(ϕiw·i;1)]

0 otherwise.

With (3.33), we obtain the system (3.13).

Uniqueness: It remains only to show that the optimal solution to (3.34) is unique. We return to

our analysis of the univariate optimization problem in (3.34). The necessary first-order condition
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for optimality of c∗i is

dh∗i
dci

(c∗i )(ci − c∗i ) ≤ 0, ∀ci ∈ R+. (3.36)

We proceed by showing that there exists only a single c∗i satisfying this expression, and since existence

has been proved, it must be the optimal solution. Recall that c̃i = F−1
i

(î
1− µi

ϕiθi

ó
+

)
, and we have

w∗
·i(ci) = 0 if and only if ci ≤ c̃i.

The reduced objective function h∗i (ci), after substituting in (3.33), can be written as:

h∗i (ci) = −rci − θiF̄i(ci)Γ(ηi; 1)

+





(n− 1)
î
µi

ϕi
+ θiF̄i(ci)

Ä
log
Ä
ϕiθiF̄i(ci)

µi

ä
− 1
äó

if ci ≥ c̃i

0 otherwise.

Taking the derivative with respect to ci, we obtain

dh∗i
dci

(ci) = −r + θifi(ci)Γ(ηi; 1)−





θifi(ci)(n− 1) log
Ä
ϕiθiF̄i(ci)

µi

ä
if ci ≥ c̃i

0 otherwise,

and the second derivative equals

d2h∗i
dc2i

(ci) = θif
′
i(ci)Γ(ηi; 1) + θi(n− 1)





fi(ci)
2

1−Fi(ci)
− f ′i(ci) log

Ä
ϕiθiF̄i(ci)

µi

ä
if ci ≥ c̃i

0 otherwise.
(3.37)

Note that we are evaluating the right derivatives at ci = c̃i, where this function is not differentiable.

In the regime ci < c̃i, we will always have d2h∗
i

dci2
(ci) < 0. If this were also true for ci ≥ c̃i, then

the objective function would be strictly concave, and uniqueness would follow. We now prove that

if d2h∗
i

dc2i
(x) < 0, then h∗i (·) is strictly concave on [x,∞). In particular, by plugging in x = c̃i we

conclude uniqueness of the optimum.

Let us compute an additional derivative of h∗i (·):
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d3h∗i
dc3i

(ci) = θif
′′
i (ci)Γ(ηi; 1)

+ θi(n− 1)





fi(ci)
2

F̄i(ci)

î
fi(ci)
F̄i(ci)

+ 3
f ′
i(ci)

fi(ci)

ó
− f ′′i (ci) log

Ä
ϕiθiF̄i(ci)

µi

ä
if ci ≥ c̃i

0 otherwise.

Observe that when we have ci ≥ c̃i, a bit of algebra yields

d3h∗i
dc3i

(ci) =
f ′′i (ci)

f ′i(ci)

d2h∗i
dc2i

(ci) +
(n− 1)θifi(ci)

2

F̄i(ci)

ï
fi(ci)

F̄i(ci)
+ 3

f ′i(ci)

fi(ci)
− f ′′i (ci)

f ′i(ci)

ò
.

If, as assumed in this Proposition, we have fi(ci)
F̄i(ci)

+ 3
f ′
i(ci)

fi(ci)
− f ′′

i (ci)
f ′
i(ci)

< 0 for all ci ≥ 0, then it will

follow that

d3h∗i
dc3i

(ci) <
f ′′i (ci)

f ′i(ci)

d2h∗i
dc2i

(ci).

Applying Grönwall’s inequality, we see that

d2h∗i
dc2i

(b) <
d2h∗i
dc2i

(a) exp

Ç∫ b

a

f ′′i (s)

f ′i(s)
ds

å
,

for any c̃i ≤ a < b. As a consequence, if d2h∗
i

dc2i
(a) ≤ 0, then d2h∗

i

dc2i
(b) < 0 for all b > a.

Rewriting (3.37), we obtain:

d2h∗i
dc2i

(c̃i) =





θif
′
i(0)
î
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθi
µi

äó
+ θi(n− 1)fi(0)

2 if c̃i = 0

θif
′
i(c̃i)Γ(ηi; 1) + θi(n− 1)ϕiθifi(c̃i)

2

µi
otherwise.

For i satisfying

Γ(ηi; 1) >





(n− 1)
[
log
Ä
ϕiθi
µi

ä
− fi(0)

2

f ′
i(0)

]
if c̃i = 0

−(n− 1)ϕiθifi(c̃i)
2

µif ′
i(c̃i)

otherwise.

(3.38)

in the assumption (3.12), we see that d2h∗
i

dc2i
(c̃i) < 0. By our application of Grönwall’s inequality, we

can conclude that h∗i must be strictly concave, and hence the optimum is unique.

Now, we turn to the banks i satisfying
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Γ(ηi; 1) >





r
θifi(0)

+ (n− 1) log
Ä
ϕiθi
µi

ä
if c̃i = 0

r
θifi(c̃i)

otherwise.

(3.39)

We can compute:

dh∗i
dci

(c̃i) = −r +





θifi(0)
î
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθi
µi

äó
if c̃i = 0

θifi(c̃i)Γ(ηi; 1) otherwise.

By (3.39), we have dh∗
i

dci
(c̃i) > 0. Since d2h∗

i

dc2i
(ci) < 0 for all ci < c̃i, we cannot have any points

satisfying the first-order condition (3.36) in [0, c̃i]. However, we do know that there must exist

an optimal solution, so therefore it must lie within (c̃i,∞). At such a point c∗i , we must have
dh∗

i

dci
(c∗i ) = 0, and also d2h∗

i

dc2i
(c∗i ) ≤ 0.9 By the same conclusion using Grönwall’s inequality, we must

have d2h∗
i

dc2i
(ci) < 0, and hence dh∗

i

dci
(ci) < 0 for any ci > c∗i . Hence, only this choice of c∗i will satisfy

the necessary first-order conditions, and as a result it must be unique.

Since we require all i to satisfy at least one of (3.39) or (3.38), the optimal solutions to each of

the n optimization problems in (3.31) must be unique.

Proof of Corollary 3.6. The proof of this result mirrors the proof of Corollary 3.3, and therefore we

omit many details.

Fix some time t < T , at which we have Xi
t = xi. We again choose some admissible controls

{c·s, w··
s }s∈[t,T ]. We then apply Itô’s formula, which only differs in yielding a few more terms. Namely,

we will need to use the generator defined in Section (3.A.2), and the stochastic integrands will be

slightly more complex. Next, to apply dominated convergence, our choice of the stopping time

τn must ensure that each of the wealth processes
{
X1

s

}
s≥0

... {Xn
s }s≥0 , is bounded at time τn.

Therefore, we choose

τn =

Å
T − 1

n

ã
∧min

i

{
inf
{
s ≥ t, |Xi

s −Xi
t | ≥ n

}}

and conclude identically.

3.A.3 Differences in Optima

Proof of Proposition 3.7. The main idea in this proof is to first establish crude bounds of:
9These are the two necessary conditions for optimality of c∗i when it lies in the interior of the feasible region.
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ĉi ≤ c∗i ≤ Kn2,

for a suitable choice of K. This then allows us to improve the bounds on c∗i itself through the

relationship

c∗i = f−1
i

Ñ
r

θi

[
Γ(ηi; 1)− (n− 1) log

(
ϕiθiF̄i(c∗i )

µi

)]

é
,

using the assumptions of a super- and sub-exponential density.

Through a direct computation with the explicit solutions in Propositions 3.2 and 3.5, we can

write

V (t, x1, ..., xn)−
n∑

i=1

Vi(t, xi) = (T − t)

[
J∗
C −

n∑

i=1

J∗
i

]

= (T − t)

n∑

i=1

[
− r(c∗i − ĉi) + (n− 1)µi(w

∗
·i − ŵ·i)

− θiF̄i(c
∗
i )
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw

∗
·i)
]

+ θiF̄i(ĉi)
[
Γ(ηi; 1) + (n− 1)Γ(ϕiŵ·i)

]

Observe that using the definitions, we have w∗
·i−ŵ·i =

θi
µi

(
F̄i(ĉi)− F̄i(c

∗
i )
)
. Plugging this expression

in and rearranging terms, we obtain:

g(t)−
∑n

i=1 gi(t)

T − t
=

n∑

i=1

[
− r(c∗i − ĉi) + θi

(
F̄i(ĉi)− F̄i(c

∗
i )
) [

(n− 1) + Γ(ηi; 1)
]

+ θi(n− 1)
[
F̄i(ĉi)Γ(ϕiŵ·i; 1)− F̄i(c

∗
i )Γ(ϕiw

∗
·i; 1)

]]
.

(3.40)

Since we know the gap in (3.40) must be positive, we can write:
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n∑

i=1

rc∗i ≤
n∑

i=1

[
rĉi + θi

(
F̄i(ĉi)− F̄i(c

∗
i )
) [

(n− 1) + Γ(ηi; 1)
]

+ θi(n− 1)
[
F̄i(ĉi)Γ(ϕiŵ·i; 1)− F̄i(c

∗
i )Γ(ϕiw

∗
·i; 1)

]]

≤
n∑

i=1

[
rĉi + θiF̄i(ĉi)

[
(n− 1) + Γ(ηi; 1)

]

+ θi(n− 1)
[
F̄i(ĉi)Γ(ϕiŵ·i; 1)

]]
,

which follows by dropping the final term and since F̄i(c
∗
i ) ≥ 0. A crude bound implies that

rc∗i ≤
n∑

i=1

(n− 1)
[
rĉi + θiF̄i(ĉi)

[
1 + Γ(ηi; 1) + Γ(ϕiŵ·i; 1)

]]

c∗i ≤ Kn2,

where K = maxi

{
ĉi +

θi
r F̄i(ĉi)

[
1 + Γ(ηi; 1) + Γ(ϕiŵ·i; 1)

]}
does not depend explicitly on n. Since

w∗
·i ≥ 0, it is also easy to see that c∗i ≥ ĉi. Both these bounds will be useful starting points for the

proof.

(i) Upper Bound: We first prove the upper bound for c∗i . First, since fi(x) ≤ κi,Ue
− x

λi,U and

both functions are decreasing, we will have f−1
i (y) ≤ λi,U log

Ä
κi,U

y

ä
, and it follows from the

system of equations (3.13) that

c∗i ≤ λi,U log

Ñ
θiκi,U

î
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθi
µi
F̄i(c

∗
i )
äó

r

é
.

Now, using fi(x) ≥ κi,Le
− x

λi,L , we know that F̄i(c
∗
i ) =

∫∞
c∗i
fi(u)du ≥ κi,Lλi,Le

− c∗i
λi,L , and write:

c∗i ≤ λi,U log

Ñ
θiκi,U

î
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθiκi,Lλi,L

µi

ä
+ (n− 1)

c∗i
λi,L

ó
r

é
≤ λi,U log

Ñ
θiκi,U

î
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθiκi,Lλi,L

µi
∧ 1
ä
+ (n− 1)

c∗i
λi,L

ó
r

é
.

(3.41)

Since each of the three terms in the brackets is non-negative, we can upper bound this quantity
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by:

c∗i ≤ λi,U log

Ñ
θiκi,U

î
Γ(ηi; 1)− log

Ä
ϕiθiκi,Lλi,L

µi
∧ 1
ä
+ λ−1

i,L

ó
nc∗i

r

é
,

and we define D = Γ(ηi; 1) − log
Ä
ϕiθiκi,Lλi,L

µi
∧ 1
ä
+ λ−1

i,L for convenience. Recall that we

obtained a crude upper bound of c∗i ≤ Kn2, which, when plugged in, yields:

c∗i ≤ λi,U log

Å
θiκi,UDKn

3

r

ã
.

This is a significantly tighter bound than Kn2. Therefore, we plug it back into (3.41). By

simplifying and bounding the term in the logarithm, we compute:

c∗i
λi,U

≤ log

Ö
θiκi,U

[
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθiκi,Lλi,L

µi

ä
+ (n− 1)

λi,U

λi,L
log
(

θiκi,UDKn3

r

)]

r

è
≤ log

á
θiκi,U

ñ
Γ(ηi; 1) + (n− 1)

ñ
log

Ç
µi

ϕiθiκi,Lλi,L

Ä
θiκi,UDK

r

äλi,U
λi,L ∨ 1

å
+ 3

λi,U

λi,L
log(n)

ôô
r

ë
.

Notice that Γ(ηi; 1) ≥ 0, log
Ç

µi

ϕiθiκi,Lλi,L

Ä
θiκi,UDK

r

äλi,U
λi,L ∨ 1

å
≥ 0. Therefore, we can write

c∗i
λi,U

≤ log

á
θiκi,U

ñ
Γ(ηi; 1) + log

Ç
µi

ϕiθiκi,Lλi,L

Ä
θiκi,UDK

r

äλi,U
λi,L ∨ 1

å
+ 3

λi,U

λi,L

ô
(n− 1) log(n)

r

ë
,

and after simplification we obtain the desired bound of:

c∗i ≤ λi,U log

Å
θiκi,UCU

r

ã
+ λi,U log ((n− 1) log(n)) ,

where CU = Γ(ηi; 1) + log

Ç
µi

ϕiθiκi,Lλi,L

Ä
θiκi,UDK

r

äλi,U
λi,L ∨ 1

å
+ 3

λi,U

λi,L
. Observe that CU does

not depend explicitly on n, but through K it will be a function of parameters throughout the

system.
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Finally, it follows that limn→∞
c∗i

log(n) ≤ λi,U .

(ii) Lower Bound: We proceed with the lower bound identically. With our assumption of fi(x) ≥

κi,Le
− x

λi,L , we know

c∗i ≥ λi,L log

Ñ
θiκi,L

î
Γ(ηi; 1)− (n− 1) log

Ä
ϕiθi
µi
F̄i(c

∗
i )
äó

r

é
. (3.42)

Moreover, since Γ(ηi; 1) ≥ 0 this term can be dropped to obtain:

c∗i ≥ λi,L log

Ñ
−θiκi,L(n− 1) log

Ä
ϕiθi
µi
F̄i(c

∗
i )
ä

r

é
. (3.43)

By plugging in the initial crude bound of c∗i ĉi, and since Γ(ϕiŵ·i; 1) = − log
Ä
ϕiθi
µi
F̄i(ĉi)

ä
by

definition, we can compute a tighter lower bound for c∗i of

c∗i ≥ λi,L log

Å
θiκi,L(n− 1)Γ(ϕiŵ·i; 1)

r

ã
. (3.44)

This is precisely the lower bound in the first part of Proposition 3.7. Note that for this result,

we needed only the lower bound on fi(·), through which (3.42) follows.

We now continue and prove the tighter lower bound, which requires the upper bound on fi(·).

In particular, we assumed that fi(x) ≤ κi,Ue
− x

λi,U , and it follows that F̄i(c
∗
i ) ≤ κi,Uλi,Ue

− c∗i
λi,U .

With (3.44), we can compute an improved upper bound of:

F̄i(c
∗
i ) ≤ κi,Uλi,U

Å
r

θiκi,L(n− 1)Γ(ϕiŵ·i)

ã λi,L
λi,U

.

This upper bound on fi(·) also implies that ĉi ≤ λi,U log
Ä
θiκi,UΓ(ηi;1)

r

ä
. Similarly, the assumed

fi(x) ≥ κi,Le
− x

λi,L will give us F̄i(ĉi) ≥ κi,Lλi,Le
− ĉi

λi,L . Putting the two together, we will have

F̄i(ĉi) ≥ κi,Lλi,L

Å
r

θiκi,UΓ(ηi; 1)

ãλi,U
λi,L

,

and it follows that

F̄i(c
∗
i ) ≤ F̄i(ĉi)

κi,Uλi,U
κi,Lλi,L

Å
r

θi

ã λi,L
λi,U

−
λi,U
λi,L (κi,UΓ(ηi; 1))

λi,U
λi,L

(κi,LΓ(ϕiŵ·i; 1))
λi,L
λi,U

(n− 1)
−

λi,L
λi,U .
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Let CL =
κi,Uλi,U

κi,Lλi,L

Ä
r
θi

ä λi,L
λi,U

−
λi,U
λi,L (κi,UΓ(ηi;1))

λi,U
λi,L

(κi,LΓ(ϕiŵ·i;1))

λi,L
λi,U

. Plugging this bound into (3.43), we obtain:

c∗i ≥ λi,L log

Ü
−θiκi,L(n− 1) log

Å
ϕiθi
µi
F̄i(ĉi)CL(n− 1)

−
λi,L
λi,U

ã
r

ê
≥ λi,L log

Ü
−θiκi,L(n− 1) log

Å
CL(n− 1)

−
λi,L
λi,U

ã
r

ê
,

since − log
Ä
ϕiθi
µi
F̄i(ĉi)

ä
= Γ(ϕiŵ·i; 1) ≥ 0, and hence this term can be dropped. Simplifying,

we arrive at the desired bound of:

c∗i ≥ λi,L log

Å
θiκi,Lλi,L
rλi,U

ã
+ λi,L log

Å
(n− 1)

[
log(n− 1)− λi,U

λi,L
log (CL)

]ã
,

from which it follows that limn→∞
c∗i

log(n) ≥ λi,L.

Putting both (i) and (ii) together, we see that c∗i = Θ
(
log(n)

)
.

Proof of Proposition 3.9. Using Propositions 3.2 and 3.5, we can compute

V −
∑n

i=1 Vi
T − t

=

n∑

i=1

[
− r(c∗i − ĉi) + θi

(
F̄i(ĉi)− F̄i(c

∗
i )
) [

(n− 1) + Γ(ηi; 1)
]

+ θi(n− 1)
[
F̄i(ĉi)Γ(ϕiŵ·i; 1)− F̄i(c

∗
i )Γ(ϕiw

∗
·i; 1)

]]
,

where V and Vi are evaluated at (t, x1, ..., xn) and the difference becomes independent of wealths

because of logarithmic utility. Notice that any of the terms in the sum will equal zero if w∗
·i = 0 (in

which case we also must also have ŵ·i = 0, and hence ĉi = c∗i ). If not, then using the results from

Section 3.4 we see that

−r(c∗i − ĉi) + θi
(
F̄i(ĉi)− F̄i(c

∗
i )
) [

(n− 1) + Γ(ηi; 1)
]

n
→

n→∞
θiF̄i(ĉi),

since c∗i ≍ log(n) and F̄i(c
∗
i ) → 0. Moreover, we have seen that (n − 1)F̄i(c

∗
i )Γ(ϕiw

∗
·i; 1) = Θ(1).

Since the sum is now of order |Mn|, putting the two together yields
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V −
∑n

i=1 Vi
T − t

= Θ(n|Mn|) .

In Proposition 3.2, it is easy to see that Vi = (T − t)Θ (|Mn|), and therefore we obtain

V∑n
i=1 Vi

= 1 +Θ(1),

as desired.

Proof of Corollary 3.10. This proposition is proved easily by analyzing the value functions in Propo-

sitions 3.2 and 3.5. We will use the notation of Section 3.4, where ĉ· indicates the decentralized

optimum, and c∗· indicates the centralized optimum (likewise for w··).

We begin by analyzing the decentralized value function Vi. Using the explicit formula in Corol-

lary 3.3, we write:

Vi
|Mn|(T − t)

=
J∗
i

|Mn|
+

log x

|Mn|(T − t)
,

and see that the second term will go to zero as n→ ∞. Moreover, by assumption that all banks in

Mn are homogeneous, we will have ŵij = ŵik for any j, k ∈Mn. This yields:

J∗
i = (1− ĉi)r − θiF̄i(ĉi)Γ(ηi; 1) + |Mn|

[
µŵ − θF̄ (ĉ)Γ(ϕŵ; 1)

]
,

where ĉ denotes the optimal liquidity supply held by any bank in Mn, and ŵ denotes the optimal

investment made by any bank to those in Mn. By using Eq (3.7) to compute ŵ, we obtain:

J∗
i = (1− ĉi)r − θiF̄i(ĉi)Γ(ηi; 1)

+ |Mn|
ï
µ

ϕ

Å
1− ϕθF̄ (ĉ)

µ

ã
+ θF̄ (ĉ) log

Å
ϕθF̄ (ĉ)

µ

ãò
,

and the desired limit follows.10

The analysis of the centralized setting is almost identical, using the value function in Proposi-

tion 3.5, we have:

V

n|Mn|(T − t)
=

J∗
C

n|Mn|
+

∑n
i=1 log xi

n|Mn|(T − t)
.

10We note that this expression for J∗
i is only correct when i is not in Mn, otherwise we would have a factor of

|Mn| − 1 in front of the term in brackets. However, in the limit this difference will vanish.
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The only term of interest for large n will be J∗
C , and by homogeneity within Mn we can see that:

J∗
C = |Mn|(n− 1)w∗µ+

n∑

i=1

(
(1− c∗i ) r − θiF̄i(c

∗
i )
[
Γ(ηi; 1) + (n− 1)Γ(ϕiw

∗; 1)
])
,

where w∗ denotes the optimal fractional amount invested into each bank in Mn. Notice that only

for bank in Mn will we have c∗i growing with n (logarithmically). Moreover, from the analysis in

Section 3.4, we also know that (n−1)F̄i(c
∗
i )Γ(ϕiw

∗
·i; 1) is of constant order. Therefore, when dividing

by n|Mn| and taking the limit, the sum will go to zero. Only the first term will remain, and we also

know that w∗ → ϕ−1 as n→ ∞, which concludes.

In order to show the limit for the price of anarchy, it is only necessary to sum Vi over n and

divide.

3.B Price of Anarchy: Super-/Sub-Power Distribution

In this section, we perform similar calculations to the main result of Section 3.4, but for shock

size densities bounded by power law distributions. In particular, we have the following analogue of

Proposition 3.7:

Proposition 3.11. If for all x we have fi(x) ≥ κi,L(ζ
0
i + x)

− 1
αi,L , for some constants αi,L < 1,

κi,L > 0, and ζ0i ≥ 1, then

c∗i ≥

Ñ
−κi,Lθi(n− 1) log

Ä
ϕiθi
µi
F̄i(ĉi)

ä
r

éαi,L

− ζ0i .

If, furthermore, the density satisfies fi(x) ≤ κi,U (ζ
0
i + x)

− 1
αi,U , with κi,U ≥ κi,L and αi,L ≤

αi,U < 1, then:

(i) Upper Bound:

c∗i ≤ CU

[
(n− 1) log(n)

]αi,U − ζ0i ,

where CU depends on all model parameters, but does not explicitly grow with n. As a result,

limn→∞
c∗i[

(n−1) log(n)
]αi,U ≤ CU .

(ii) Lower Bound:

c∗i ≥
Å
κi,Lθi
r

(n− 1)

ïÅ
αi,L

αi,U
− αi,L

ã
log(n− 1)− log(CL)

òãαi,L

− ζ0i ,
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for CL > 0 depending only on i. Hence, limn→∞
c∗i[

(n−1) log(n)
]αi,L ≥

Ä
κi,Lθi

r

Ä
αi,L

αi,U
− αi,L

ääαi,L

.

The proof follows an identical technique. In the special case where the shock density is indeed a

power distribution, we have the following analogue of Corollary 3.8.

Corollary 3.12. If fi(x) =
Ä

1
αi

−1
ä
(ζ0

i )
1
αi

−1

(ζ0
i +x)

1
αi

, then

c∗i = Θ
Ä[
(n− 1) log(n)

]αi
ä
.

This result can be seen by simply plugging αi,L = αi,U = αi into Proposition 3.11.

This Corollary can be used to replicate the remaining analysis in Section 3.4, but as the results

are qualitatively similar, we omit these calculations.

3.B.1 Proofs

Proof of Proposition 3.11. The proof of this result largely mirrors the proof of Proposition 3.7.

Recall that we have shown that

ĉi ≤ c∗i ≤ Kn2,

for a suitable choice of K. By our assumptions on the density, it also follows that:Å
y

κi,L

ã−αi,L

− ζ0i ≤ f−1
i (y) ≤

Å
y

κi,U

ã−αi,U

− ζ0i ,

and

κi,L
1

αi,L
− 1

(ζ0i + x)
1− 1

αi,L ≤ 1− Fi(x) ≤
κi,U
1

αi,U
− 1

(ζ0i + x)
1− 1

αi,U .

We can then follow the proof of Proposition 3.7 identically, but using these bounds instead.
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Chapter 4

Tradeoffs in Algorithmic Fairness

4.1 Introduction

Aspects of societal decision-making have become increasingly outsourced to algorithmic systems –

including criminal risk assessment (Angwin et al., 2016), labor market organization (Chalfin et al.,

2016), provision of medical care (Kleinberg et al., 2015), and more. The promise of these systems

is often that they are more efficient than human decision-makers, and hence are appealing, such as

for greater throughput or lower cost. However, under closer investigation, algorithmic systems have

been seen to perpetuate or even amplify existing biases (Angwin et al., 2016; O’Neil, 2017; Eubanks,

2018). These concerns have brought greater attention towards the design of algorithms that exhibit

fairness or other ethical qualities (Kearns and Roth, 2019; Barocas et al., 2021).

A large body of existing work defines fairness through particular statistical or mathematical

quantities. These measures can be used either as constraints (Dwork et al., 2012; Hardt et al.,

2016), or as a penalty imposed for deviating from equality (Berk et al., 2017). Both approaches

take an egalitarian perspective, but one critique of this approach is that equality need not be fair

(Cooper and Abrams, 2021). Furthermore, even if this objection is suppressed, there are many

different measures of fairness (Narayanan, 2018) that can conflict with each other (Kleinberg et al.,

2016). An example of this was seen within the realm of criminal justice, where journalists (Angwin

et al., 2016) criticized an algorithm’s unfairness with respect to one metric, while algorithm designers

(Dieterich et al., 2016) demonstrated equality of another. Since the right measure of ‘fairness’ can

be unclear, some recent research instead seeks to provide moral and ethical justification behind

particular measures (Heidari et al., 2019; Hertweck et al., 2021).
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Beyond the difficulty of defining and developing a ‘fair’ algorithm, there often exists a tension

between the goals of model-builders and model-impacted individuals. For instance, algorithmic

decision systems for targeted conditional cash transfer programs can exhibit comparatively greater

accuracy than human-based systems, but both were found to yield inter-group inequalities (Noriega-

Campero et al., 2020). On one hand, policymakers may view this result positively – they increased

coverage for the needy. On the other hand, those in need may themselves desire an allocation

mechanism that is fair, equal, or other such qualities – even at the expense of policymakers. From

this tension has emerged a area of research aiming to understand a tradeoff between fairness and

accuracy (Diana et al., 2021; Little et al., 2022; Liang et al., 2022). In particular, these studies adopt

the perspective that fairness is inherently at odds with accuracy, which is not trivially true.1

Instead, this chapter identifies and formalizes a tradeoff in algorithmic design between two differ-

ent ethical frameworks of distributive justice: Utilitarian (Bentham, 1996; Mill, 2008) and Rawlsian

(Rawls, 2003). More precisely, we present a class of objective functions that interpolates between

the preferences of a utilitarian and Rawlsian designer.

In many algorithmic settings, a model is tasked with distributing some quantity of predictive

loss throughout a population. Each of these two approaches to distributive justice can be used

to determine which model’s allocation of loss is most ‘good’. The utilitarian paradigm is often

associated with accuracy (as opposed to fairness), but this need not be the case. If, for example, a

utilitarian believed that each individuals’ disutility is proportional to their model-induced squared

error, then they would argue that the most accurate (with respect to mean squared error) model

is also maximally ‘good’. In doing so, moreover, this utilitarian designer weighed the needs of all

individuals equally – could this not be ‘fair’? It is therefore critical to emphasize that such statements

about what ‘fairness’ is (or is not) must therefore reflect a contextual acceptance (or rejection) of

particular ethical frameworks. Namely, the assertion of a ‘fairness-accuracy’ tradeoff requires that

either: 1) utility is not tied to accuracy or 2) a utilitarian approach to the problem is unfair.

This work does not advocate for a single, universal definition of algorithmic fairness. Instead, we

begin from two well-known theories of distributive justice. A utilitarian designer will define ‘good’

to be the sum of population utility, whereas a Rawlsian designer will measure ‘good’ through the

outcomes of a population’s least advantaged.2 The objective functions in this chapter therefore

arguably reflect a ‘fairness-fairness’ tradeoff – or to be precise, a ‘Utilitarian good-Rawlsian good’

tradeoff. In part, this tradeoff is valuable to understand because each ethical framework addresses
1See Cooper and Abrams (2021) for a more in-depth critique of common approaches to the ‘fairness-accuracy’

tradeoff.
2In Section 4.2 we will discuss these two theories and their implied objective functions in more detail.
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a common critique of the other. A utilitarian can be indifferent towards inequality, whereas a

Rawlsian’s greatest concern is the most needy. Conversely, while a Rawlsian designer is unconcerned

with the preferences of the majority, a utilitarian weights all individuals’ preferences equally. This

mixed approach allows us to partially address the shortcomings of each framework while leveraging

their advantages.

Our main contributions are threefold. First, we conceptualize a class of objective functions and

show that they capture a relaxation of Rawls’s ‘original position’. This result exhibits close ties

to social welfare and risk aversion. Second, we study convergence properties of the objective func-

tions and their minimzers. These technical results verify that we are indeed interpolating between:

1) utilitarian and Rawlsian measures of ‘good’, and 2) their most desirable outcomes. Finally, our

experiments show the tradeoff between these two measures on several common datasets, and demon-

strate how this tradeoff is influenced by model complexity. In particular, a designer’s preferences

(over bundles of Rawlsian and utilitarian ‘good’) can be used to determine their desired point along

this tradeoff. In these experiments, we also study group-averaged loss, and see that an egalitarian

approach may be significantly at odds with Rawlsian principles.

The rest of the chapter is organized as follows. Section 4.1.1 reviews the most relevant and recent

work. Section 4.2 presents the learning problem and objective functions for utilitarian and Rawlsian

designers. Section 4.3 contains our main conceptual and theoretical results, where we introduce a

class of objective functions and study its properties. Section 4.4 trains various models on real-world

datasets and studies several aspects of their performance. Finally, Section 4.5 concludes and presents

directions for future work.

4.1.1 Relevant Literature

There are several areas of related work, each of which we present here. However, we introduce and

discuss the relevant ethical theories in Section 4.2.

A significant branch of literature seeks to measure fairness through mathematical or statistical

measures. These works address fairness by imposing constraints or penalties based on these measures

during the in-processing stage of model building, e.g. in Dwork et al. (2012); Hardt et al. (2016);

Berk et al. (2017); Corbett-Davies et al. (2017). However, there is not a universally agreed upon

measure of fairness. Moreover, such formal criteria for fairness can conflict (Kleinberg et al., 2016),

yield to long-term damage (Liu et al., 2018) or are subject to fundamental statistical limitations

(Corbett-Davies and Goel, 2018). As a response to these challenges, recent work has grounded
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particular measures of fairness in moral and ethical arguments (Heidari et al., 2019; Hertweck et al.,

2021). The greatest similarity between this area and our work is a shared approach to fairness

through distinct theories of ethical ‘good’.

Rawls’s framework has appeared in computer science literature through minimax fairness (Heidari

et al., 2018; Martinez et al., 2020; Lahoti et al., 2020; Diana et al., 2021; Papadaki et al., 2022; Yang

et al., 2022; Little et al., 2022). These papers focus largely on group minimax fairness. Instead,

we study individual minimax fairness through a relaxation of the Rawlsian ‘original position’. Two

comparative advantages of our approach are: 1) avoiding any danger of fairness gerrymandering (see

Kearns et al. (2018) for another solution to this issue), and 2) no requirement to be given group labels

(see Hashimoto et al. (2018); Lahoti et al. (2020) for other such approaches). The most similar paper

to our own is Heidari et al. (2018), where the authors use a closely related social welfare function

to constrain an accuracy-maximizing optimization problem. However, we do not consider accuracy

to be the fundamental objective – instead focusing on maximizing social welfare itself. Finally, we

note that a different principle from Rawls’s theory of justice has been studied by Liu et al. (2021),

who provide techniques for imposing fair equality of opportunity on Bayesian graphical models.

Social choice theory and welfare economics have also been influenced by Rawls’s principles (Sen,

1976; Hammond, 1976; D’Aspremont and Gevers, 1977). However, differing views in these areas

can argue that only utilitarian designs are possible (Maskin, 1978) or rational (Harsanyi, 1975). We

note that the class of social welfare functions that appear in this work and Heidari et al. (2018)

are justified axiomatically by Roberts (1980). As a result, recent approaches to fairness in machine

learning relying on notions of social welfare (Rambachan et al., 2020, 2021) are closely related to our

work. Namely, this chapter’s approach can be interpreted as a planner aiming to maximize social

welfare for a particular class of functions. However, in contrast to Rambachan et al. (2021), the

social welfare functions in this work do not require group-specific weights to be given a priori, and

instead rely on a designer’s degree of risk aversion from the Rawlsian ‘original position’.

Minimax optimizations (or variants thereof) have been well-studied for their robustness quali-

ties. For example, distributionally-robust optimization (DRO) problems can significantly improve

predictive outcomes for underrepresented groups (Hashimoto et al., 2018; Sagawa et al., 2020; Li

et al., 2021a). In addition, Lahoti et al. (2020) use a variant of DRO that adversarially weights

observations during the learning process to improve the performance of worst-off groups, which is

closely tied to the Rawlsian notion of ‘good’. Most related to our work is the identical relaxation

of minimax optimization known as ‘Tilted Empirical Risk Minimization’ (TERM), proposed by Li

et al. (2021b). The authors study properties of both the loss function and its optimal solutions
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under the assumption of generalized linear models. One core difference is conceptual – we focus on

representing these objective functions as relaxations of the Rawlsian veil of ignorance, incorporating

features of risk aversion. Technically, we rigorously prove a stronger convergence property for the

optimal solutions. Finally, in our experiments we study the impact of increasing model complexity

on the tradeoff between two notions of the ‘good’.

Finally, a number of papers in the literature aim to characterize a ‘fairness-accuracy’ tradeoff

(Liang et al., 2022; Little et al., 2022). We note that this tradeoff also appears in several fairness-

constrained approaches (Corbett-Davies et al., 2017; Diana et al., 2021). Cooper and Abrams (2021)

present a critique of these studies, questioning the assumptions that fairness and accuracy are at

odds, that equality is fair, and more. We empirically study the existence of a similar tradeoff, but

arguing that it instead reflects a balance between utilitarian and Rawlsian measures of ‘good’. In

addition, we observe how the tradeoff is affected by changes to model complexity, which to the best

of our knowledge, has not been previously studied.

4.2 Modeling and Ethical Frameworks

In this section, we describe a general supervised learning setting, and two theories of distributive

justice that can be used to perform model selection.

Consider a n individuals, denoted by the set N := {1, ..., n}. Let (xi, yi)i=1...n denote their

observed characteristics, where xi ∈ X are features and yi ∈ Y is a target. In simple classification

settings, we may have Y = {0, 1}. A set of candidate models is defined by fθ : X → Y for each

θ in parameter space Θ. Finally, we will assume that the loss function ℓ(fθ(xi), yi) represents the

disutility experienced by individual i under model fθ.3 For simplicity of notation, we often write

this as ℓi(θ). The function ℓ is assumed to be primitive (i.e. given a priori) and in general may be

highly contextual.

Utilitarian A utilitarian designer, aligning with the political philosophy of John Stuart Mill (Mill,

2008) and Jeremy Bentham (Bentham, 1996), would seek to minimize the sum of population disu-

tility – equivalently maximizing total utility.4 A fundamental feature of utilitarian ethics is that

it can justify harming one or more individuals if others are sufficiently compensated in doing so.
3Usually, a loss function is chosen only based on the task at hand and not necessarily according to this principle.

However, it is possible for ℓ to reflect particular kinds of preferences – e.g. in medical diagnoses, false negatives may
be more heavily penalized than false positives. The general construction of loss functions that satisfy this assumption
is far beyond our scope, and must be largely driven by each model’s application domain and users.

4Recall that we assumed the loss function ℓ(fθ(xi), yi) equals individual i’s disutility under model fθ. As a result,
the utility-maximizing problem is equivalent to loss-minimization.
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Utilitarianism also exhibits the valuable property that all individuals’ needs are equally important.

However, it is blind to higher-order characteristics of the distribution of utilities – i.e. large increases

to its variance are justified in the name of an infinitesimal increase to its mean. As a result, it has

been criticized for its indifference towards inequality (Sen, 1979). In what follows we say that a

utilitarian designer solves:

min
θ∈Θ

∑

i

ℓi(θ), (4.1)

whose minimizer is given by θ̂u. In many common machine learning examples, the objective function

may equal n−1
∑

i(yi − fθ(xi))
2, which corresponds to a utilitarian designer with disutility equal to

squared loss, i.e. ℓi(θ) := (yi − fθ(xi))
2.

Rawlsian Another possible approach comes from the thought experiment and philosophy of Rawls

(2003). For completeness, we briefly state a few of his main points. First, Rawls presents the ‘original

position’ (also referred to as the ‘veil of ignorance’) – wherein individuals do not know their place

in society, talents, or even notions of what entails a good life. From such a position, he argues

that a rational individual would desire that “inequalities are to be arranged so that they are [...]

to the greatest benefit of the least advantaged” (Rawls, 2003).5 Termed the ‘difference principle’,

this minimax approach is desirable through its ability to address utilitarianism’s indifference to

inequality. However, it is an extremely strict paradigm, and is largely unconcerned with the majority

of a population. In our context, a Rawlsian designer will aim to solve:

min
θ∈Θ

max
i
ℓi(θ), (4.2)

whose minimzer is denoted θ̂r. Practically speaking, problem (4.2) can be difficult to solve in

practice.6 In addition, a Rawlsian designer’s optimal model necessarily satisfies one of two criterion:

1) if the maximization in (4.2) has a unique maximizer i, then the model has reached the fundamental

limit of predictability for observation i, 2) if there are multiple maximizers, it is impossible to reduce

the loss for one of these without increasing the loss of another in doing so. Effectively, this means the

optimal model is agnostic to any easily-predictable observations. A Rawlsian designer therefore views
5A comprehensive summary of Rawls’s philosophy is far beyond the aim of this work. However, we note that Rawls

prioritizes two other principles before the one mentioned here. First, that all individuals are entitled to the greatest
possible set of individual liberties. This principle retains a minimax flavor – if the individual with least liberties agrees
to a particular organization of society, then behind the veil of ignorance, all others would necessarily agree. A second
principle is that offices yielding any inequalities must be equally accessible to all (i.e. equality of opportunity). The
latter principle has featured in several recent studies (Hardt et al., 2016; Liu et al., 2021).

6The challenge arises due to the discrete maximum between i = 1, ..., n, and therefore the objective is neither
differentiable in i, nor on a convex domain.
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outliers in a fundamentally different manner from traditional data scientists – outliers represent their

assessment of good, and are not noise to be discarded. We also note that problem (4.2) is also closely

tied to robust control design in engineering (Kemin and Doyle, 1998, Chapter 14) and optimization

under ambiguity in economics (Gilboa and Schmeidler, 1989b) – the latter of which is reminiscent

of the original position.

We remark that our presentation of Rawls’s philosophy is greatly simplified. In order to justify

that the solution to (4.2) is ‘fair’, Rawls would first require that principles be satisfied: 1) basic

liberties are guaranteed and 2) offices carrying inequalities are open and equally accessible to all (see

footnote 5). The latter principle on fair equality of opportunity has appeared in several recent papers

(Hardt et al., 2016; Heidari et al., 2019; Liu et al., 2021). While we assume that both principles

hold, systemic inequalities in society would suggest that this need not be the case. A more complete

integration of Rawls’ principles into the design and implementation of algorithmic systems remains

a rich area for future work. It is also important to note that (4.2) reflects the result of applying

Rawls’s difference principle to a relaxed original position. Individuals must at least know their notion

of good (i.e. the function ℓ), but still be unaware of all other characteristics (i.e. covariates x and

target y).

Much of the literature on algorithmic fairness is interested in group measures of fairness. Let

the given observations be partitioned into groups G1, ..., Gm, which may not be mutually exclusive.

Applying a minimax approach to average group loss would give:

min
θ∈Θ

max
j

1

|Gj |
∑

i∈Gj

ℓi(θ). (4.3)

Notice that this is an inter-group Rawlsian paradigm coupled with intra-group utilitarian approach.

It is not immediately clear which of (4.2) or (4.3) is preferred. Indeed, there is a contentious

debate in the literature between individual and group fairness.7 Individual fairness represents a

limiting case of group fairness, but it can generalize poorly and be difficult to measure. Conversely,

group fairness can fail to account for intra-group differences in outcomes, leading to so-called ‘fairness

gerrymandering’ (Kearns et al., 2018).

We do not aim to resolve this debate, only to argue that the individualized approach in (4.2) is

closer to reflecting Rawls’s original position than (4.3). In practice it is impossible to perfectly man-

ifest Rawls’s original position – recall that the individual-driven fairness of (4.2) is still a relaxation
7See Dwork et al. (2012) and Sharifi-Malvajerdi et al. (2019) for examples of individual fairness, or Hardt et al.

(2016) and Diana et al. (2021) for group fairness. Also see Kearns et al. (2018) on mixing both individual and group
notions of fairness.
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of the true veil of ignorance. An individual merely being within the sample may reflect certainty

about some of their characteristics, e.g. that they are applying for a low-paying job, high-interest

loan, or have been previously incarcerated. However, they remain uncertain of their characteristics

within the sample – including group membership and the distribution of characteristics within each

group. Now, we can instead imagine a different relaxation of the original position that is related to

the group-wise approach of (4.3). Here, the group-conditional distributions of covariates X,Y must

be known, while only group membership is uncertain. Individuals in this new position face strictly

less uncertainty than before, and hence the veil of ignorance is more transparent. Although we focus

on individual fairness, we will also empirically study the effects on groups.

4.3 Utilitarian-Rawlsian Continuum

Ultimately, the approach of both utilitarian and Rawlsian designers can have shortcomings. In the

main conceptual contribution of this chapter, we define a set of objective functions that interpolates

between these two seemingly conflicting paradigms.

Let W : Rn → R be a function used to aggregate the population’s individual losses. Note that

we will seek to minimize W . Consider the following properties we may desire of W .

• Continuity: W is continuous in each of its arguments.

• Anonymity: For any v ∈ Rn, if σ is a permutation ofN , thenW (v1, ..., vn) =W (vσ(1), ..., vσ(n)).

• Strong Pareto Property: For v, u ∈ Rn, if there exists M ⊂ N satisfying vj = uj for all j ∈M

and vi < ui for all i ∈MC , then W (v) < W (u).

• Elimination of Indifferent Individuals: For v, ṽ, u, ũ ∈ Rn, if there exists M ⊂ N satisfying

vj = uj and ṽj = ũj for all j ∈M while vi = ṽi and ui = ũi for all i ∈MC , then W (v) < W (u)

if and only if W (ṽ) < W (ũ).

• Pigou-Dalton Transfer Principle: For v, u ∈ Rn, if vk = uk for any k ∈ N \ {i, j}, while both

vi + vj = ui + uj and ui < vi < vj < uj , then W (v) ≤W (u).

These properties appear often in the literature on welfare economics and social choice theory (Maskin,

1978; Roberts, 1980; D’Aspremont and Gevers, 1977). They are slightly distinct here to fit the con-

text of our problem. It is helpful to provide some intuition for the final two properties. Elimination

of Indifferent Individuals asserts that when fixing a subset of coordinates, the ordering implied by W
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is indifferent to the value at which those coordinates are fixed.8 Finally, the Pigou-Dalton Principle

states that all else equal, we would weakly prefer greater equality.

It is well-known that these conditions imply that W must be of the form W (v) =
∑

i g(vi)

for some continuous, strictly increasing, convex function g. Informally, Elimination of Indifferent

Individuals will imply thatW (v) =
∑

i gi(vi), Anonymity requires that all gi’s are identical and equal

to some g, and finally the Pareto Property and Pigou-Dalton Principle yield strictly increasing and

convex g, respectively. For more detail, see Maskin (1978) or Roberts (1980). For our purposes, it

remains only to consider which classes of g(·) are permitted.

Proposition 4.1. Let v, u ∈ Rn, and 1 denote the all ones vector of appropriate dimension. If for

all δ ∈ R we have W (v) < W (u) if and only if W (v + δ1) < W (u+ δ1), then it must be that:

W (v) = C
∑

i

eλvi

for some λ ∈ R. For W to satisfy the Pareto Property and the Pigou-Dalton Principle, we must

further have C > 0 and λ > 0.

The proof is found in Appendix 4.A. It is valuable to discuss the assumption of Proposition 4.1. It

asserts that our preferences over possible loss profiles depend only on the differences between losses.

That is, W exhibits independence of common level. As a consequence of this assumption, there is

only a single feasible class of functions for aggregating losses, which is the sum of exponentiated

individual loss.

It is possible to make a different assumption to establishes a unique form for W . Consider

independence of common scale. That is, for any δ > 0 and u, v ∈ Rn
+, W (v) < W (u) ⇐⇒ W (δv) <

W (δu). Note that in contrast with the setting of Proposition 4.1, u, v must be non-negative. In this

case, we would conclude that W = C
∑

i v
α
i , for C > 0 and α ≥ 1. This functional form appears in

Heidari et al. (2018) as a constraint in supervised learning settings, and is axiomatically derived in

the social choice literature by Roberts (1980). We note that for W to satisfy independence of both

common scale and level, only a utilitarian objective function is feasible (Maskin, 1978).

We can now arrive at the following class of objective functions, which are monotone transforma-

tions of the function W appearing in Proposition 4.1.
8This assumption is more critical in social choice settings, wherein an individual’s vi’s has a greater degree of

flexibility. Here, we will use the same function ℓ for all losses, and hence one of M or MC must be empty, and the
assumption trivially holds.
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Definition 4.1 (Utilitarian-Rawlsian Objective, L(θ;λ)). For any λ ∈ (0,∞), we define:

L(θ;λ) =
1

λ
log

(
1

n

∑

i

eλℓi(θ)

)
. (4.4)

Note this transformation normalizes the objective, which can be convenient for computational ap-

proaches. However, it is not fundamentally necessary to do so. The optimization problem associated

with this objective is:

min
θ∈Θ

L(θ;λ) = min
θ∈Θ

1

λ
log

(
1

n

∑

i

eλℓi(θ)

)
, (4.5)

whose optimal solution is θ̂λ. We will see in subsequent results that as λ sweeps through the range

(0,∞), we obtain a sequence of ‘fair’ models lying on a frontier between two competing notions of

good – utilitarian and Rawlsian. This is illustrated in Figure 1, where in panel (b) the indifference

curves of a designer are used to determine the best model – and hence a particular value of λ.

λ → 0

λ → ∞

1
n

∑
i ℓi(θ)

m
a
x
i
ℓ i
(θ
) Increasing

λ

(a)

1
n

∑
i ℓi(θ)

m
a
x
i
ℓ i
(θ
)

Indifference
Curves

Optimal
Model

(b)

Figure 1: In panel (a), an illustration of the tradeoff between utilitarian and Rawlsian
objectives. Each point on the curve represents an optimal model corresponding to
some value of λ ∈ (0,∞). In (b), model selection based on societal preferences
over the two types of ‘good’. Greater opacity is of a particular indifference curve is
associated with lower utility.

It is important to note that this framework provides one substantial difference when compared

to ‘fairness-as-a-constraint’ approaches. Imagine that we are able to improve the expressiblity of

our model class, i.e. the space Θ is strictly enlarged. Figure 2 shows that this enlargement can be

used for improving either average or worst-case loss. Choosing the new optimal model should be

dictated by one’s relative preferences over both goods. In contrast, seeking to minimizing average

loss (subject to an upper bound on maximum loss) would leverage the enlargement of Θ for only

average-case performance. It is conceivable that a large improvement in worst-case loss could have

been realized instead. In the experiments of Section 4.4, we will see how the frontier adjusts when
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increasing model expressibility.

Original
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Figure 2: Illustration of how increases to model expressibility can manifest improve-
ments to average-case and / or worst-case losses. The portion of the curve highlighted
in blue represents models that are strict improvements to the original model (shown
in dark green).

Main theoretical results in Section 4.3.1 show that problem (4.5) is a continuous relaxation

between (4.1) and (4.2) – which is studied through both the Rawlsian original position, and conver-

gence properties of both (4.4) and its optimal solutions. In addition, interesting connections to a

regularized fairness approach and further properties of (4.5) are briefly presented in Section 4.3.2.

For completeness, we include the following analogous relaxation of the group-wise minimax ap-

proach in (4.3).

min
θ∈Θ

1

λ
log

Ñ
1

m

∑

j

e
λ|Gj |−1 ∑

i∈Gj
ℓi(θ)

é
. (4.6)

However, as previously justified, we focus exclusively on L(θ;λ) and problem (4.5).

4.3.1 Characterization

This section contains our main theoretical results. We present an interpretation of L(θ;λ) and

problem (4.5) that reflects a weakened notion of the Rawlsian veil of ignorance, and note important

connections to social welfare maximization and risk aversion. Next, we study convergence properties

of both L(θ;λ) and its minimizers θ̂λ . Both results together verify that we are indeed representing

a continuum of objective functions between utilitarian and Rawlsian designs. Finally, we conclude

by briefly analyzing a simple setting – univariate linear regression.

Relaxed Veil of Ignorance and Welfare First, we show that problem (4.5) captures a natural

relaxation of Rawls’s original position. Consider an individual who is randomly assigned covariates

X and ‘true’ target Y according to X,Y ∼ Unif({(x1, y1), ..., (xn, yn)}). In each state of the world θ,
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she observes some random loss ℓ(fθ(X), Y ). If this loss carries disutility proportional to eλℓ(fθ(X),Y ),

then it is possible to see that:

1

n

∑

i

eλℓi(θ) = EX,Y

î
eλℓ(fθ(X),Y )

ó
.

In this context, the solution to problem (4.5) is equivalently minimizing expected disutility of loss

for an individual with constant absolute risk aversion λ. Informally, λ captures the degree to which

she dislikes uncertainty in the distribution of ℓ(fθ(X), Y ). This connection is seen in the following

Proposition, which is presented without proof.

Proposition 4.2. Let uλ(ℓi(θ)) = −eλℓi(θ) denote the utility function of individual i corresponding

to model fθ. Then:

argmin
θ∈Θ

L(θ;λ) = argmax
θ∈Θ

Ei∼Unif[1...n] [uλ(ℓi(θ))] . (4.7)

Notice that the connection established in Proposition 4.2 implies that the function L(θ;λ) is

effectively utilitarian – up to a monotone transformation, it is proportional to the total utility in

the population. However, it is utilitarian with respect to a particular measure of utility – not loss

itself. Since uλ is a non-linear function of loss, the optimal solution to (4.7) does not coincide with

the utilitarian optimum.

Convergence We now turn to the main technical results of this chapter. For limiting values of λ,

we study the behavior of L(θ;λ) and the optimal solutions to problem (4.5).

As λ → ∞, the sum in (4.4) is dominated by the observation with maximum loss, and hence

approaches the Rawlsian minimax objective in (4.2). Conversely, as λ → 0 the exponential is

approximately linear in its argument, which leads directly to the utilitarian objective of (4.1). The

following result shows that for any θ, L(θ;λ) indeed satisfies these properties.

Proposition 4.3. For all θ ∈ Θ:

lim
λ→0

L(θ;λ) =
1

n

∑

i

ℓ(fθ(xi), yi)

lim
λ→∞

L(θ;λ) = max
i
ℓ(fθ(xi), yi).

The proof is found in Appendix 4.A. Although simple, this result on pointwise convergence verifies

that at small (resp. large) values of λ, the objective function in problem (4.5) behaves exactly like

that of (4.1) (resp. (4.2)). Therefore, it is interpolating between utilitarian and Rawlsian measures
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of good.

In fact, it is possible to show that L(θ;λ) exhibits a stronger form of convergence, which can

yield convergence of its minimizers. This is formalized in the following main result.

Theorem 4.4. Let θ̂λ be the optimal solution to (4.5). If Y is compact, the set {fθ(x), θ ∈ Θ} is

compact for all x ∈ X , and ℓ(·, ·) is continuous, then:

lim
λ→0

θ̂λ ∈ argmin
θ∈Θ

1

n

∑

i

ℓ(fθ(xi), yi)

lim
λ→∞

θ̂λ ∈ argmin
θ∈Θ

max
i
ℓ(fθ(xi), yi).

In addition, if the minimizers on the right-hand side are unique (denoted θ̂u and θ̂r), then:

lim
λ→0

θ̂λ = θ̂u

lim
λ→∞

θ̂λ = θ̂r.

The proof in Appendix 4.A uses the notion of Γ-convergence for a sequence of functions – which

is stronger than uniform convergence. It can be leveraged to characterize the sequence of their

minimizers (Braides, 2006; Maso, 2012).

Theorem 4.4 is useful for several reasons. First, it further justifies the use of L(θ;λ) for capturing

both utilitarian and Rawlsian optimal designs. In addition, it shows that some minimax solution

can be approximated by a sequence of minimizers to the relaxed problems. In the case where θ̂r is

not unique, then we conjecture that it is possible to characterize the limit of θ̂λ more precisely as

follows.

For u ∈ Rn let u(1) denote its largest entry, and u(−1) be the vector of remaining entries. For

u, v ∈ Rn, we say that u ⪯ v if u(1) < v(1) or both u(1) = v(1) and u(−1) ⪯ u(−1). This is often

known as the leximax ordering. We expect that limλ→∞ θ̂λ = θ̂lex, where ℓ(θ̂lex) ⪯ ℓ(θ) for all θ,

but to the best of our knowledge this has not yet been rigorously proven.

Example: Linear Regression We now turn to a simple setting, with Θ = R, fθ(x) = θx, and

ℓ(ŷ, y) = (ŷ−y)2. For simplicity we also assume that E[X] = E[Y ] = 0. Plugging these into problem

(4.5) yields the following convex and unconstrained optimization problem:

min
θ∈R

1

λ
log

(
1

n

∑

i

eλ(θxi−yi)
2

)
.
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The necessary (and sufficient) first-order condition can be computed as:

0 =
∑

i

eλ(θ̂λxi−yi)
2

∑
j e

λ(θ̂λxj−yj)2
(θ̂λxi − yi)xi.

Manipulating the above, we obtain:

θ̂λ =
fiCov(X,Y )

Ṽar(X)
,

which is almost exactly the usual least squares estimator. However, now the covariance and variance

are computed with respect to a twisted measure P̃λ, which satisfies dP̃λ

dP (xi) = eλ(θ̂λxi−yi)
2

n−1
∑

j eλ(θ̂λxj−yj)
2 .

Namely, this measure ascribes larger (resp. smaller) weights to observations whose exponentiated

loss is greater (resp. less) than the average. However, it depends explicitly on θ̂λ, and therefore the

optimal solution cannot be computed in closed form.

Let us now informally consider what happens for large λ. The quantity
∑

j e
λ(θ̂λxj−yj)

2

is domi-

nated by the observations with maximum loss, and equal measure is given to each of them. Therefore,

if we let I = argmaxi(θ̂λxi − yi)
2, then fiCov(X,Y ) ≈

∑
i∈I yixi and Ṽar(X) ≈

∑
i∈I x

2
i . Hence, for

large λ, it follows that θ̂λ ≈ Cov(XI ,YI)
Var(XI)

, which is exactly the usual least squares estimator – only

restricted to observations in the set I.

We note that this setting has been more closely studied in another paper. In particular, under

the assumption of generalized linear models, Li et al. (2021b) derive several interesting properties of

the optimal solution. Under reasonable conditions, they show that the average loss (resp. maximum

loss) is increasing (resp. decreasing) in λ at the optimal solution θ̂λ. In addition, they prove that the

empirical variance of the residuals (θ̂λxi−yi) is non-increasing in λ, and verifies this to be the case in

simulations. We might therefore expect that the finite-sample variance of θ̂λ is also non-decreasing

in λ, although this has not been formally shown.

4.3.2 Further Properties

There are many other desirable properties of optimal solutions to learning problems, including (but

not limited to) generalization performance, estimator properties, computational tractability, and

optimality guarantees. In this section, we briefly touch on some of these topics and highlight con-

nections to other areas of work – such as fairness-penalized optimization and adversarial reweighting

of observations. Strengthening these results remains an active and interesting directions for future

research.
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Identifiability From a statistical perspective, a natural question to ask about problem (4.5) is

whether or not the ‘true’ parameter is identifiable. That said, if the data is generated according to

some θ∗ ∈ Θ, is it possible to find θ∗? In the following result, we show that this requires a stronger

condition than unbiased errors, which depends on the choice of loss function.

Proposition 4.5. Assume that ∃θ∗ ∈ Θ for which Yi|Xi
i.i.d.∼ fθ∗(Xi)+ϵi, where ϵ1...ϵn|Xi are i.i.d.

according to density function fϵ. Assume also that ℓ(ŷ, y) = g(y − ŷ) for some differentiable and

positive-valued g, that is strictly increasing in |y− ŷ|. For any r ∈ Range(g), let g−1
(−)(r) and g−1

(+)(r)

denote its negatively- and positively-valued inverse, respectively.

Then, if and only if g′
Ä
g−1
(+)(r)

ä
fϵ
Ä
g−1
(+)(r)

ä
= −g′

Ä
g−1
(−)(r)

ä
fϵ
Ä
g−1
(−)(r)

ä
for all r ∈ Range(g),

then over the randomness of the sample X,Y , we have:

E [∇θL(θ
∗;λ,X, Y )] = 0, ∀λ > 0.

The proof is found in Appendix 4.A. A special case of Proposition 4.5 occurs when both the

distribution of errors fϵ and the primitive loss function ℓ are symmetric. In particular, given a

symmetric loss function ℓ, if the distribution of errors is not symmetric, then there is no hope of

obtaining a consistent estimator – the true parameter θ∗ is not identifiable through the first-order

conditions. However, in order to definitely prove consistency, it may be necessary to show that

L(θ;λ) satisfies a uniform law of large numbers, which often requires compactness of Θ and that

L(θ;λ) be bounded by a integrable function.

Regularization We now show that problem (4.5) can be used to bound an optimization problem

that penalizes the objective based on its worst-case individual loss. Since for any λ and θ, L(θ;λ) is

upper bounded (resp. lower bounded) by the maximum (resp. average) loss, there must exist some

γ ∈ (0, 1) for which:

L(θ;λ) = γ

(
1

n

∑

i

ℓ(fθ(xi), yi)

)
+ (1− γ)max

i
ℓ(fθ(xi), yi). (4.8)

Fix some λ and let θ̂λ be the associated optimal solution to problem (4.5). We can compute its

corresponding value of γ̂, and majorize the following penalized optimization problem:

min
θ∈Θ

1

n

∑

i

ℓ(fθ(xi), yi) +
1− γ̂

γ̂
max

i
ℓ(fθ(xi), yi) ≤

1

γ̂
L(θ̂λ;λ). (4.9)
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A similar bound can be computed in the opposite order: fix γ, minimize the γ-regularized objective

(that appears in the left-hand side of (4.9)) for θ̂γ , compute the value of λ̂ that satisfies (4.8), and

observe that:

1

γ
min
θ∈Θ

L(θ; λ̂) ≤ 1

n

∑

i

ℓ
Ä
fθ̂γ (xi), yi

ä
+

1− γ

γ
max

i
ℓ
Ä
fθ̂γ (xi), yi

ä
.

We note that equality in the above need not hold – optimal solutions to problem (4.5) need not be

minima of (4.9). In particular, L(θ;λ) depends on the full distribution of ℓ(θ), whereas problem (4.9)

is only concerned with its mean and lowest percentile. Hence, it is not always the case that problem

(4.5) yields the value of θ that minimizes worst-case loss for some fixed average loss.9 Nonetheless,

a comparative benefit of problem (4.5) is that the objective function is smooth, and therefore can

be solved numerically by many common algorithms.

Algorithmic Considerations From a technical perspective, L(θ;λ) may be preferable to the

Rawlsian minimax objective because it is both differentiable and convex, which is shown in the

following.

Proposition 4.6. If ℓ(fθ(x), y) is differentiable and convex in θ for all x, y, then L(θ;λ) is convex.

Proof. Since z → log(
∑

i e
λzi) is convex (in z ∈ Rn

≥0) and non-negative, then its composition with

ℓ(fθ(xi), yi) (which needs only be differentiable and convex) is also convex.

As a result, we can use first-order optimization methods, which often have guaranteed convergence

to a local minimum. Computing the gradient of L(θ;λ) gives:

∇θL(θ;λ) =
∑

i

eλℓ(fθ(xi),yi)

∑
k e

λℓ(fθ(xk),yk)
∇θℓ(fθ(xi), yi), (4.10)

where ∇θℓ(fθ(xi), yi) denotes the full gradient of ℓ(fθ(xi), yi) with respect to θ.10 Observe that this

is simply a weighted average of the gradient at each observation i, where the weights are positively

correlated with the losses. There is a relationship to adversarially re-weighted learning, for example,

Lahoti et al. (2020) allows an adversarial agent to re-weight observations in order to increase a

learner’s weighted loss. Here, the weights are similarly related to loss, only not adversarial but

pre-determined.
9Consider a simple example where there are two possible loss profiles (i.e. two possible values for ℓ1(θ), ..., ℓn(θ))

given by [0.5, 2.75, 2.75] and [1, 2, 3]. The former has smaller (resp. larger) objective value for small (resp. large) λ.
However, both have the same average loss. In particular, it is possible for [0.5, 2.75, 2.75] to not be the minimizer of
L(·;λ).

10For brevity, we omit the gradient of fθ that would appear from the chain rule.
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In effect, steps along the gradient in (4.10) reflect a relaxed version of Rawls’s difference principle.

Originally, the principle permits inequalities only when they are to the benefit of the least advan-

taged. Therefore, to ‘improve’ over the status quo, one should aim to assist the worst-off. In (4.10),

this is not necessarily the case – any harm done to the worst-off can be justified if there is sufficient

benefit provided to others. The ability for such a setting to arise reflects a fundamental utilitarian

influence. However, as λ grows, it becomes increasingly (and impossibly) difficult to justify any

harm done to the worst-off.

Practically, there can be a significant computational cost associated with gradient descent. The

following Proposition is from Theorem 13 in Li et al. (2021b), and slightly re-formulated here.

Proposition 4.7. Let Θ ⊂ Rd for some d. Assume further that for all x, y, θ ∈ X ,Y,Θ, the loss

function ℓ(fθ(x), y) satisfies both ||∇θℓ(fθ(x), y)||22 ≤ C and

CminI ≼ ∇2
θℓ(fθ(x), y) ≼ CmaxI,

where I denotes the d-dimensional identity matrix.

Then, by running gradient descent with step size α = 1
Cmax+2Cλ , the k-th iteration θ(k) satisfies:

L(θ(k);λ)− L(θ̂λ;λ) ≤
Å
1− Cmin

Cmax + 2Cλ

ãk Ä
L(θ(0);λ)− L(θ̂λ;λ)

ä
.

As a direct implication, the convergence rate suffers with increases to λ. However, we might

expect that problem (4.5) remains tractable for up to moderate values of λ. In addition, note that

the required step size to achieve linear convergence is also decreasing in λ, which may yield further

challenges. The design of efficient algorithms to solve problem (4.5) remains an open area. In our

simulations, we observed that computation time was significantly reduced by using θ̂λ as the starting

point for finding a new optimum θ̂λ+δ, for some small step δ > 0.

4.4 Experiments

We now implement our methodology by solving problem (4.5) over a range of λ for several common

datasets. The following can all be obtained from the UCI Machine Learning Repository (Dua and

Graff, 2017).

• COMPAS: Arrest records from 2013 and 2014 in Broward County, Florida by (ProPublica),

used in Angwin et al. (2016).
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Table 1: Prediction targets and group-defining features.

Dataset Target Groups

COMPAS 2-Year Recidivism Race
Bank Marketing Subscription Decision Marriage Status

Adult Income Income > $50,000 Race
Credit Card Default Payment Default Marriage Status

Communities & Crime Violent Crime Level Poverty Percentage (Quartile)
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Figure 3: The tradeoff between average and maximum loss at various λ for logistic regression
models. Points are colored according to λ. The top panel illustrates the tradeoff for individual
losses. The bottom panel shows the analogue for within-group average loss, with the identity
line in gray.

• Bank Marketing: Part of a marketing campaign by a Portugese bank between 2008 and

2013 by Moro et al. (2014).

• Adult Income: Collected from the 1994 US Census, including demographic features and

income.

• Credit Card Default: Credit card holders of a large Taiwanese bank, collected by Yeh and

Lien (2009).

• Communities & Crime: A combination of many different features of counties within the

United States, collected by Redmond and Baveja (2002). Includes sociodemographic data from

the Census, survey data from law enforcement, and crime statistics collected by the FBI.

Although the objective function of (4.4) focuses on maximum individual loss, we also study average

losses within groups. Table 1 shows the target variables and the group labels used in each dataset.

For conciseness, all other details of our training methodology are omitted, but publicly-available

here.
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Average and Worst-Case Losses The tradeoff between average and worst-case loss reflects

exactly the tradeoff between utilitarian and Rawlsian measures of the good. Given the sequence

of optimal solutions {θ̂λ}λ>0, we compute their average and worst-case individual loss within the

training sample. For the simple setting of logistic regression, these are shown in the top panel of

Figure 3. The tradeoff is most visible for the COMPAS and Communities & Crime datasets, where

as λ increases we see maximum loss reduced at the expense of average loss. However, for the other

datasets worst-case performance is not significantly improved by varying λ. In fact, it appears that

optimal models for the Credit Card Default dataset are indifferent to the value of λ.

We also compute average- and worst-case group loss for these datasets, where a group’s loss is

defined as its average – see (4.6). The bottom panel of Figure 3 plots an analogous tradeoff between

average and maximum group loss for several values of λ. In the COMPAS dataset, we see that

increasing λ yields a gradually more egalitarian outcome – wherein the average and maximum group

losses are increased together. This suggests that equality may come at the expense of all groups.

Increasing Model Complexity We are particularly interested in studying how the curves in

Figure 3 change as model complexity is increased. Intuitively, this corresponds to enlarging Θ –

the set of feasible predictive models. Practically, this is associated with a greater degree of model

expressibility (e.g. adding additional covariates, or training a model with greater depth). Here, we

study neural networks of gradually increasing depth, and compare them to the baseline of a simple

logistic regression. The main text only includes results for the COMPAS dataset, with remaining

figures found in Appendix 4.B.

The top panel of Figure 4 shows that average individual loss is not significantly affected by

increasing the number of layers. However, for the same value of average (individual) loss, maximum

individual loss can be significantly reduced – see, for instance, the point with least maximum loss

for average loss equal to 0.2. This observation suggests that when increasing model complexity,

Rawlsian good may exhibit larger returns than utilitarian good. In the bottom panel of Figure 4,

both average and maximum group losses greatly vary. Within this space of group losses, we often

see a difference between the egalitarian (i.e. closest to the diagonal) and Rawlsian optimum. This

observation suggests that equality remains at odds with both utilitarian and Rawlsian good, and in

particular, that a variation of the group-skew condition from Liang et al. (2022) may hold.
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Figure 4: Result of increasing model complexity for the COMPAS dataset. From left to right: Logistic
Regression, 1-Layer Neural Network,..., 4-Layer Neural Network. The top panel plots average vs
maximum individual loss. The bottom panel plots average vs maximum group loss, and includes the
identity line in gray for reference. In this dataset, groups were defined based on race.

4.5 Discussion and Conclusion

In this chapter, we have presented a class of objective functions for supervised learning problems

that mixes aspects of both utilitarian and Rawlsian ethical frameworks. Our theoretical results are

complimented by experiments on commonly-studied datasets.

Empirically, we often see a tradeoff between utilitarian and Rawlsian measures of good. From

an economic perspective, this tradeoff can be interpreted as a ‘production frontier’ between the

two goods. In this context, increasing model complexity amounts to greater production capabilities.

Therefore, to determine which model along this frontier is best, it is necessary to consider a designer’s

preferences over fictitious bundles of ‘utilitarian good’ and ‘Rawlsian good’. Namely, designers must

determine how much utilitarian good they are willing to sacrifice for some increase in Rawlsian good.

To view minimax fairness (e.g. maximum loss) as a constraint significantly reduces the richness of

this question – effectively assuming that the designer’s marginal rate of substitution between these

two goods is infinite. Instead, we advocate for a fair-by-design perspective that incorporates broader

consideration of a designer’s preferences.

The objective functions in this work correspond to a relaxation of the Rawlsian original position.

We have shown that this relaxation is closely tied to expected utility of a risk-averse individual facing

random assignment within the population – a different veil of ignorance. In principle, it is therefore

possible to choose an ideal model based on the risk appetite of model-impacted individuals. Hence,

we might expect that for low-consequence decisions, risk aversion is low and less emphasis is given

to the Rawlsian good. Conversely, high-consequence decision-making such as credit and criminal
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justice would be strongly influenced by Rawlsian principles. Then clearly, there is unlikely to be a

universally agreed upon level of fairness, which must be instead closely tied to a model’s use cases.

There are several interesting and valuable directions for future work. First and foremost, we only

study two particular approaches to distributive justice and their application to the in-processing

stage of model building. It is also common to consider fairness during pre-processing and post-

processing stages. Moreover, there are other ethical theories that can inform the development of

fair models. For instance, the capability approach in Sen (1999) was developed as an alternative to

utility or resource-based theories of fairness. In addition, we empirically observed a conflict between

egalitarian and Rawlsian optima, which has been characterized by Liang et al. (2022) for two groups

in classification settings. The further study of these theories and their potential tradeoffs remains

an open area of work.

In addition, there are opportunities to further develop theory behind our so-called utilitarian-

Rawlsian continuum. For example, it may be possible to develop more efficient algorithms for solving

the relaxed optimization problem at large values of λ, or even for computing the optimal solutions

over a wide range of λ. The statistical properties of these estimators are also of interest, as we believe

that large values of λ would cause the optimal solution to have large variance (over the randomness

of a set of observations). Hence it may be the case that Rawlsian good is at odds with estimation

quality. Finally, characterizing the effects of increased model complexity is an extremely interesting

open problem. For example, a Rawlsian designer would have no objection to including protected

attributes in the training data, as they would be used only to benefit the least advantaged. It is

valuable to analyze how much benefit can be gained from doing so.

Human decision-makers are uniquely endowed with the ability to entertain – but not fully accept

– conflicting ethical perspectives and ideals. We hope that our work is a step towards building

models that more closely reflect this ability.
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Appendices

4.A Proofs

Proof of Proposition 4.1. Define g̃(ez) = g(z). Then, the level invariance assumed of g is equivalent

to unit invariance of g̃. That is, we assumed that

∑

i

g̃(evi) <
∑

i

g̃(eui) ⇐⇒
∑

i

g̃(ecevi) <
∑

i

g̃(eceui).

For this statement to hold for all u, v, it must be the case that g̃ is a positively homogeneous

function, and for any t > 0 is of the form g̃(t) = Ctα for constants C and α. Conclude by seeing

that g(z) = g̃(ez) = Ceαz as desired.

For this form of g to be increasing, it must be that C > 0. Finally, for convexity, it must be that

α > 0.

Proof of Proposition 4.3. For convenience of notation, recall that we write ℓi(θ) = ℓ(fθ(xi), yi).

First, the limit for λ → 0 is shown. Taking the limit of the expression directly yields the

indeterminate form 0
0 , and applying L’Hôpital’s Rule gives:

lim
λ→0

∑

i

eλℓi(θ)∑
j e

λℓj(θ)
ℓi(θ),

from which the desired result immediately appears.

When taking the limit λ→ ∞, another indeterminate form appears, so we again begin with:

lim
λ→∞

∑

i

eλℓi(θ)∑
j e

λℓj(θ)
ℓi(θ).

Observe that this is a weighted average, where the i-th weight is
Ä∑

j e
λ(ℓj(θ)−ℓi(θ))

ä−1
. Let us define
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the set of maximizers I = argmaxi ℓi(θ), satisfyin ℓi(θ) = ℓ∗(θ) for all i ∈ I. For any i /∈ I, notice

that
Ä∑

j e
λ(ℓj(θ)−ℓi(θ))

ä
≤ e−λ(ℓ∗(θ)−ℓi(θ)). The right-hand side converges to zero as λ → ∞, and

since all weights are lower bounded by zero, this upper bound is tight. The desired limit reduces to

lim
λ→∞

∑

i∈I

eλℓi(θ)∑
j e

λℓj(θ)
ℓi(θ).

By a similar argument, it is possible to see that for all i ∈ I, eλℓi(θ)∑
j eλℓj(θ)

→
λ→∞

1
|I| , and hence:

lim
λ→∞

∑

i∈I

eλℓi(θ)∑
j e

λℓj(θ)
ℓi(θ) =

∑

i∈I

1

|I|
ℓi(θ) = ℓ∗(θ)

as desired.

Proof of Theorem 4.4. Recall that we defined L = {(ℓ(fθ(x1), y1), ..., ℓ(fθ(xn), yn)), ∀θ ∈ Θ} as the

space of all feasible loss profiles. To simplify notation, we write ℓ = (ℓ1, .., , ℓn) to denote an element

of L. Since the image of Θ under fθ(x) is assumed to be compact for every x, then continuity of

ℓ(·, ·) and compactness of Y implies compactness of L.

First, notice that:

argmin
ℓ∈L

1

λ
log

(
1

n

∑

i

eλℓi

)
= argmin

ℓ∈L

1

λn

∑

i

(
eλℓi − 1

)
(4.11)

for every λ. In particular, the minimizer of (4.11) equals (ℓ(fθ̂λ(x1), y1), ..., ℓ(fθ̂λ(xn), yn)), for θ̂λ

solving problem (4.5). We define Fλ(ℓ) =
1
λn

∑
i

(
eλℓi − 1

)
. Differentiating Fλ(ℓ) with respect to λ

gives:
∂

∂λ
Fλ(ℓ) =

∑
i e

λℓi
(
e−λℓi − (1− λℓi)

)

λ2n
≥ 0,

so this sequence of functions is monotone in λ. In addition, it is easy to show that for any ℓ ∈ L,

limλ→0 Fλ(ℓ) =
1
n

∑
i ℓi. Since this pointwise convergence holds for a monotone sequence of functions

on a compact set, the convergence is uniform in L (Rudin, 1976, Theorem 7.13):

Fλ(ℓ)
unif. in L→

λ→0

1

n

∑

i

ℓi.

Furthermore, the limiting function is continuous in ℓ, so it follows that this sequence also Γ-converges

in L (see Theorem 2.1 in Braides (2006) or Proposition 5.2 in Maso (2012)). Γ-convergence can be

used to prove that the sequence of minimizers of Fλ converges to a minimizer of its Γ-limit (see
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Theorem 2.10 in Braides (2006) or Corollary 7.20 in Maso (2012)). To apply these results, it is

necessary to establish one additional condition on the sequence {Fλ}.

We say that {Fλ(·)}λ>0 is equi-coercive on L if for all t ∈ R there exists a compact set Kt for

which {Fλ ≤ t} ⊂ Kt for all λ. Since Fλ ≥ 1
n

∑
i ℓi, and the latter has compact sub-level sets on L,

then indeed {Fλ(·)}λ>0 is equi-coercive.

Together, equi-coercivity and Γ-convergence imply that the limit of {ℓ̂λ}λ>0, the sequence of

minimizers to (4.11), is a minimizer to the Γ-limit of Fλ. Namely:

lim
λ→0

argmin
ℓ∈L

Fλ(ℓ) ∈ argmin
ℓ∈L

1

n

∑

i

ℓi. (4.12)

To obtain the desired result, it is only necessary to rewrite the optimization problems in terms of θ

and Θ.

Of course, if the minimizer on the right-hand side is unique, then the argmax in (4.12) contains

only a single value, and it must be that limλ→0 θ̂λ = θ̂u.

The proof for taking the limit as λ→ ∞ is nearly identical. We include its outline here.

Consider now the sequence of functions Gλ(ℓ) = 1
λ log

(∑
i e

λℓi
)
. Observe that Gλ converges

pointwise to maxi ℓi. Taking a derivative with respect to λ gives:

∂

∂λ
Gλ(ℓ) =

λ
∑

i
eλℓi∑
j eλℓj

ℓi − log
(∑

i e
λℓi
)

λ2
≤ λmaxi ℓi − log(maxi e

λℓi)

λ2
= 0,

so again this sequence is monotone. Identical arguments imply that Gλ(ℓ)
Γ→

λ→∞
maxi ℓi. We can

similarly use this sequence’s Γ-limit to construct compact sub-level sets and prove equi-coercivity.

So, we obtain

lim
λ→∞

argmin
ℓ∈L

Gλ(ℓ) ∈ argmin
ℓ∈L

max
i
ℓi,

and conclude as before.

Proof of Proposition 4.5. First, plug in the assumption on ℓ and ϵi = y−fθ∗(xi). Taking the gradient

with respect to θ we have:

E [∇θL(θ
∗;λ,X, Y )] = E

[∑

i

eλg(ϵi)∑
j e

λg(ϵi)
g′(ϵi) (−∇fθ∗(Xi))

]
.
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By the tower property we can obtain

E [∇θL(θ
∗;λ,X, Y )] = E

[∑

i

eλg(ϵi)∑
j e

λg(ϵi)
(−∇fθ∗(xi))E [g′(ϵi)|g(ϵ1), ..., g(ϵn), Xi]

]
.

Recall that ϵi is independent of all g(ϵj), j ̸= i, but g′(ϵi) cannot be pulled out since g−1 is not

uniquely defined. However, since g−1(r) can only take two values, then E [g′(ϵi)|g(ϵi) = r,Xi] = 0 if

and only if

g′
Ä
g−1
(+)(r)

ä
fϵ
Ä
g−1
(+)(r)

ä
+ g′
Ä
g−1
(−)(r)

ä
fϵ
Ä
g−1
(−)(r)

ä
= 0,

for all r ∈ Range(g), where we used the notation introduced in the Proposition.

Proof of Proposition 4.7. Using Lemma 3 from (Li et al., 2021b), we have:

∇2
θL(θ;λ) =

∑

i

λeλ(ℓ(fθ(xi),yi)−L(θ;λ))
(
∇θℓ(fθ(xi), yi)−∇θL(θ;λ)

)(
∇θℓ(fθ(xi), yi)−∇θL(θ;λ)

)T

+ eλ(ℓ(fθ(xi),yi)−L(θ;λ))∇2
θℓ(fθ(xi), yi).

(4.13)

The largest eigenvalue of this matrix can be upper bounded by Weyl’s inequality as follows:

λmax

(
∇2

θL(θ;λ)
)
≤λmax

(∑

i

λeλ(ℓ(fθ(xi),yi)−L(θ;λ))
(
∇θℓ(fθ(xi), yi)−∇θL(θ;λ)

)(
∇θℓ(fθ(xi), yi)−∇θL(θ;λ)

)T
)

+ λmax

(∑

i

eλ(ℓ(fθ(xi),yi)−L(θ;λ))∇2
θℓ(fθ(xi), yi)

)
.

The second term can be upper bounded by Cmax, since we assumed that ∇2
θℓ(fθ(x), y) ≼ CmaxI for

all x, y and θ. The first can be controlled as follows:

λmax

Ä(
∇θℓ(fθ(xi), yi)−∇θL(θ;λ)

)(
∇θℓ(fθ(xi), yi)−∇θL(θ;λ)

)Tä
= ||∇θℓ(fθ(xi), yi)−∇θL(θ;λ)||22

≤ ||∇θℓ(fθ(xi), yi)||22 + ||∇θL(θ;λ)||22

≤ 2C,

since we assumed that ||∇θℓ||22 ≤ C, which itself implies that the norm of ∇θL(θ;λ) is bounded by

the same quantity. Altogether, we arrive at:

λmax

(
∇2

θL(θ;λ)
)
≤ Cmax + 2Cλ.
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By dropping the first term in (4.13), we can also obtain the lower bound of:

∇2
θL(θ;λ) ≽ CminI.

Theorem 13 in (Li et al., 2021b) concludes.

4.B Additional Figures

For conciseness, Section 4.4 on increasing model complexity only shows the results for a few datasets.

In this appendix, we include the remaining figures, along with other interesting plots.
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Figure 4.B.1: Result of increasing model complexity for the Bank Marketing dataset. From left to
right: Logistic Regression, 1-Layer Neural Network,..., 4-Layer Neural Network. The top panel plots
average vs maximum individual loss. The bottom panel plots average vs maximum group loss, and
includes for reference the identity line in gray. In this dataset, groups were constructed based on an
individual’s marital status.
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Figure 4.B.2: Result of increasing model complexity for the Adult Income dataset. From left to right:
Logistic Regression, 1-Layer Neural Network,..., 4-Layer Neural Network. The top panel plots average
vs maximum individual loss. The bottom panel plots average vs maximum group loss, and includes for
reference the identity line in gray. In this dataset, groups were constructed based on an individual’s
race.
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Figure 4.B.3: Result of increasing model complexity for the Credit Card Default dataset. From left to
right: Logistic Regression, 1-Layer Neural Network,..., 4-Layer Neural Network. The top panel plots
average vs maximum individual loss. The bottom panel plots average vs maximum group loss, and
includes for reference the identity line in gray. In this dataset, groups were constructed based on an
individual’s marital status.
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Figure 4.B.4: Result of increasing model complexity for the Communities & Crime dataset. From
left to right: Logistic Regression, 1-Layer Neural Network,..., 4-Layer Neural Network. The top panel
plots average vs maximum individual loss. The bottom panel plots average vs maximum group loss,
and includes for reference the identity line in gray. In this dataset, groups were constructed based on
quartiles of a county’s poverty percentage.
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