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Abstract

Quantifying rates of intergenerational economic mobility, or the ability for children

to achieve a higher standard of living than their parents (the “American Dream”), is

a challenging empirical task. Previous studies have largely relied on measures such

as log-log elasticities and rank-rank correlations to assess levels of mobility. How-

ever, these models are limited in their precise quantification of specific transition

probabilities, which model the likelihood of a child transitioning to a particular so-

cioeconomic group given their parents’ data. In this work, we formulate a series

of Markov transition matrices to model observed rates of intergenerational mobility

over several decades using data from the Panel Study of Income Dynamics. Both

relative and absolute mobility formulations are considered, where relative mobility is

defined by income quintiles and absolute mobility is defined by discrete fixed income

buckets. We demonstrate that rates of intergenerational relative mobility have re-

mained remarkably stable between the 1968 and 1997 birth cohorts, with high levels

of income persistence. These findings largely align with past literature even though

income inequality has increased in subsequent decades. However, our absolute mo-

bility formulation indicates statistically significant results of higher levels of upward

mobility (almost double the likelihood of joining the top income bucket) when com-

paring the 1968 and 1997 birth cohorts. We note that the results from the absolute

mobility parameterization are confined to this paper’s specific parameterization and

are likely structurally skewed towards greater perceived levels of intergenerational

mobility. Furthermore, we acknowledge that our findings are limited in terms of

broader inferences regarding intergenerational mobility due to the lack of significant

robustness checks and limited historical data. Yet, the results are still interesting

and useful for researchers in terms of providing a future model framework for better

estimators of economic mobility.
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Chapter 1

Introduction

The “American Dream” – the belief that each generation can achieve a better life

than the previous one – has been a core American value since the nation’s founding

(Samuel, 2012). While intergenerational economic mobility has long been a central

tenet of the American ethos, it was not until the 20th century that systematic studies

on this topic began to appear. Early research was primarily rooted in sociological

theory, focusing on the relationship between immigration and economic mobility or

examining the role of education and family background in economic outcomes (Borjas,

1992; Hout, 1988).

In the 1960s, with President Lyndon B. Johnson’s Great Society programs aimed

at alleviating poverty and inequality, there was a growing interest in studying inter-

generational economic mobility (Katz, 2013). The demand for empirical evidence of

economic progress led to the aggregation of new, large-scale longitudinal datasets.

This development enabled researchers to conduct more rigorous quantitative analyses

on income mobility across generations.

Studying intergenerational economic mobility provides crucial insights into how

e↵ectively institutions and policies foster equal opportunities. By examining economic

mobility trends over time, policymakers can gain a deeper understanding of recurring
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poverty cycles and analyze environments where an individual’s economic progress is

independent of their prevailing socioeconomic background (Solon, 1999).

Furthermore, investigating intergenerational economic mobility through quanti-

tative analysis of socioeconomic group transitions has widespread implications. A

better understanding of the likelihood of transitioning between economic subgroups

can help researchers explore how factors like family background, education, and labor

market conditions are linked to children’s economic outcomes with greater certainty.

Note that the complex nature of modeling economic mobility measures makes it dif-

ficult to establish direct causal links, yet analysis still o↵ers valuable insights for all

stakeholders involved.

Moreover, research on intergenerational mobility plays a vital role in public dis-

course around challenging systemic inequities and ensuring fair distribution of col-

lective resources (Corak, 2013). Therefore, a deeper understanding of mobility can

lead to more informed discussions about inequality and socioeconomic persistence.

Findings from studies on intergenerational mobility can either a�rm or challenge

prevalent narratives concerning the “American Dream,” potentially shaping public

opinion and influencing political will in the allocation of government resources.

The primary objective of this paper is to analyze observed changes in intergenera-

tional economic mobility rates across several decades, employing two distinct models:

relative and absolute mobility. Relative mobility is defined as a child’s ability to

transition to a di↵erent income quintile compared to their parent’s income quintile.

In contrast, absolute mobility is defined as a child’s likelihood of moving to a higher

or lower income bucket than their parents, where income buckets are determined by

fixed dollar thresholds rather than quintile rankings. Specifically, this paper aims to

calibrate a series of Markov transition matrices for both relative and absolute mobil-

ity analyses, providing better estimators of individuals’ transitions between economic

groups over time. By doing so, we seek to contribute to the understanding of inter-
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generational mobility patterns and their evolution across generations.

The Markov mathematical framework is the preferred stochastic tool for modeling

socioeconomic mobility as it represents the likelihood of transitioning from one state

to another within a defined system. Markov processes can neatly represent transitions

between social classes over time and can model the long-term stationary distribution

of the likelihood of moving between economic ranks. Crucially, Markov chains are

suitable for socioeconomic mobility analysis due to their memoryless property. This

property means that the probability of transitioning to a future state depends solely on

the current state rather than the sequence of preceding events. Thus, the underlying

qualitative principle assumed by this model is that an individual’s economic situation

is primarily influenced by their parents’ economic situation, rather than any residual

e↵ects from prior generations.

Recent studies on relative economic mobility have utilized a Markov transition

framework, but this approach has been limited to analyzing a single column of the

transition matrix. This paper aims to expand on prior research by comparing transi-

tion probabilities between two distinct birth cohorts on an element-by-element basis

and plotting more comprehensive time series data of transition probabilities spanning

multiple decades. The implementation presented in this paper enables a more exten-

sive examination of how rates of relative mobility have evolved across generations.

Previous research has quantified absolute intergenerational income mobility by

examining the proportion of children whose incomes surpass those of their parents.

However, these studies often present a binary perspective, solely focusing on whether

children earn more or less than their parents. This study aims to expand upon

prior work by analyzing the extent of deviation in children’s earnings relative to

their parents’. Specifically, we introduce a Markov transition matrix to quantify

the likelihood of a child belonging to a fixed absolute income bucket, conditional on

the income bucket of their parents. Each income bucket serves as a proxy for various
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lifestyle categories, with all observed incomes adjusted to the first year in the dataset.

The following provides an overview of the subsequent chapters:

• Chapter 2: Introduces the mathematical architecture of Markov models for

relative and absolute mobility. Discusses the mathematical features of Markov

transition matrices, including the stationary distribution and mixing times. It

then defines the delta matrix to compare transition probabilities, and lastly,

discusses the model assumptions.

• Chapter 3: Overviews the datasets used to calibrate the Markov models while

detailing the cleaning and preprocessing procedures.

• Chapter 4: Presents results for the relative mobility parametrization, including

how to calibrate the transition matrices, comparing the first and last transition

matrix, and time series plots of specific transition probabilities.

• Chapter 5: Similar to the previous chapter, this chapter provides results for

the absolute mobility parametrization. It compares the first and last transition

matrix, plots time series of specific transition probabilities, and discusses the

stationary distribution and mixing times.

• Chapter 6: Reflects on the previous chapters and places the results in the

context of existing literature. Lastly, it presents this paper’s contributions,

limitations, and areas for future work.

1.1 Literature Review

1.1.1 Relative Mobility

Following the proliferation of large-scale longitudinal datasets, Zimmerman (1992)

employed several novel econometric strategies to estimate the elasticity between par-
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ents’ and their children’s lifetime earnings in the United States. By measuring parent-

child earnings elasticity, this foundational paper delved into relative intergenerational

economic mobility.

Zimmerman (1992) makes an important contribution to the literature on intergen-

erational mobility by challenging consensus views from previous studies (House, 1976;

Behrman and Taubman, 1985). These papers indicate that children’s earnings are

not strongly correlated with their parent’s earnings with an intergenerational earn-

ings elasticity of roughly 0.2 or less (lower elasticity signals greater mobility and less

correlation between parent-child incomes). Through the formal modeling of measure-

ment error and transitory fluctuations in annual earnings measures, Zimmerman’s

statistical model suggests intergenerational earnings elasticity of around 0.4, indicat-

ing much less mobility than prior studies. Note that an intergenerational earnings

elasticity of 1 signals a perfect correspondence between parent-child incomes.

However, more robust methods utilizing panel data on earnings histories would

help reduce sensitivities to assumptions as the paper’s results rely on a relatively

small sample of under 900 father-son pairs. Additionally, Zimmerman (1992) focuses

on understanding average intergenerational mobility between 1981 and 1996, as it

lacks time series data on earnings elasticity.

Zimmerman (1992) also conceptualizes a Markov transition matrix as an alter-

native model to analyze intergenerational mobility. The paper defines a transition

matrix that categorizes income ranks (such as quartiles) of father-son pairs, where

each element of the transition matrix signifies the likelihood that a son will reach

a particular quartile, given that their father is in a specified income interval. In

this formulation, absolute immobility would be represented by an identity transition

matrix, which indicates a direct and complete correlation between the father’s and

son’s income ranks. Conversely, complete mobility would be depicted by a transition

matrix with identical probabilities in each element, as the son’s income rank would
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then be independent of their father’s income rank.

Nonetheless, the paper underutilizes this Markov approach due to empirical chal-

lenges related to data availability at the time. Given the utility of transition matrices

in quantifying intergenerational economic mobility, the increased collection of income

data and the aggregation of datasets present avenues for further analysis.

Recent studies by Chetty et al. (2014) present new observations of relative inter-

generational income mobility that build o↵ Zimmerman (1992). Unlike Zimmerman’s

focus on average parent-child income elasticity over a time interval, (Chetty et al.,

2014) focus on measuring intergenerational mobility over several decades via rank-

rank correlations and quintile Markov transition matrices.

Chetty et al. (2014) addresses numerous pitfalls of Zimmerman (1992), through

a more robust mathematical framework and larger more complete datasets. The

paper indicates that utilizing a rank-based model rather than elasticity demonstrates

greater resilience to lifecycle and attenuation bias from transitory income fluctuations,

which are also prominent in Zimmerman (1992). Regarding data, Chetty et al. (2014)

vastly expands upon the 900 father-son pairs sampled in Zimmerman (1992), using de-

identified tax records to link parents’ income to their children’s income. For children

born from 1980 onwards, the study constructs a parent-child sample using U.S. tax

records from 1996-2012, linking approximately 95% of children in each birth cohort

to their parents and yielding a sample of 3.7 million children per cohort. However,

for birth cohorts prior to 1980, the study utilizes the Statistics of Income (SOI)

annual cross-sections, a stratified random sample covering 0.1% of tax returns, to

link children to parents based on dependent information available starting in 1987.

By utilizing substantial sample sizes and more comprehensive income data, Chetty

et al. (2014) establishes that rank-rank correlations of intergenerational mobility have

remained remarkably stable for individuals born between 1971 and 1993.

Like Zimmerman (1992), Chetty et al. (2014) also supplements the paper’s pri-
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mary methodology—rank-rank correlations for Chetty et al. (2014) and parent-child

elasticity for Zimmerman (1992)—by considering Markov transition matrices to di-

rectly measure the probability that a child reaches the top quintile of the income

distribution. Chetty et al. (2014) formulates quintiles by ordering children in com-

parison to their peers within the same birth cohort, and similarly ranking parents

based on their standing amongst other parents with children in the corresponding

cohort.

While Zimmerman’s analysis based on Markov chains was rudimentary in design,

Chetty et al. (2014) plots the probabilities of children ascending to the highest income

quintile within their birth cohort, based on their parents’ income quintile (Chetty

et al., 2014, see Figure 3 on pg. 21). Note that Chetty et al. (2014) does not reveal or

discuss the complete quintile Markov transition matrix estimates; instead, it presents

the vector corresponding to transitions to the highest child income quintile from the

set of parent income quintiles. This vector, corresponding to the lowest parent income

quintile to the highest, was estimated as 9%, 18%, 19%, 23%, 31% for the child birth

cohort of 1971, with these probabilities exhibiting little to no directional trend for

the subsequent 15 years. This supports the paper’s primary rank-rank correlation

analysis, indicating that intergenerational mobility remained stable throughout the

1970s and 1980s.

The partial implementation of the Markov transition matrix to directly quantify

the probability of a child moving to the top quintile was a significant advancement

in understanding relative intergenerational economic mobility. However, the Markov

transition matrices can be further defined and explored for broader applicability in

modeling mobility dynamics. By doing so, it’s possible to generate time series proba-

bilities of a child moving from any defined income rank to another, instead of merely

the probability of reaching the top quintile. For example, we can plot the diago-

nal entries of the transition matrix that correspond with the probability of income

7



persistence or remaining in the same income quintile as your parents. Additionally,

conducting an element-wise statistical significance comparison of transition matrices

o↵ers greater robustness to the conclusions of Chetty et al. (2014).

1.1.2 Absolute Mobility

Prior studies of intergenerational economic mobility have focused on predominantly

relative mobility, typically measured as income elasticities or rank-rank correlations

(Zimmerman, 1992; Chetty et al., 2014). While many of the leading studies on relative

mobility including Chetty et al. (2014) suggest that relative mobility has been fairly

stable over recent decades, a newer paper also by Chetty et al. posits that relative

and absolute mobility can diverge if income growth rates vary across the distribution

(Chetty et al., 2017). This document introduces absolute mobility as an alternative

metric to intergenerational economic mobility, specifically defining it as the proportion

of children who have outearned their parents between the 1940s and the 1980s birth

cohort.

Despite longstanding interest in absolute mobility studies, data limitations linking

parents and children have impeded empirical analysis. Chetty et al. (2017) makes

two methodological contributions to overcome the prevailing data limitations. First,

Chetty et al. (2017) constructs marginal income distributions for parents and children

by birth cohort, using Census and Current Population Surveys (CPS) cross-sectional

data. Second, it estimates copulas between parents’ and children’s incomes by using

tax data and assumes copula stability over time to project backward. By combining

marginal income distributions with the copula—which provides probabilities for each

child-parent income rank pairing—Chetty et al. (2017) can e↵ectively estimate the

fraction of children earning more than their parents.

Chetty et al. (2017) documents significant empirical findings that rates of abso-

lute mobility have fallen sharply, from approximately 90% for the 1940 birth cohort
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to 50% for the 1980 birth cohort with the most severe declines amongst middle-class

families. The novel combination of marginal income distributions with copulas be-

tween parent-child incomes has been pivotal in studying absolute intergenerational

economic mobility.

However, further analysis could be conducted to better understand absolute in-

tergenerational mobility over time. To extend the analysis from Chetty et al. (2017),

we propose modeling absolute mobility as a Markov process, with a transition matrix

representing the probability of a child belonging to a predefined income bucket con-

ditional on their parents’ bucket. This parameterization di↵ers from that of relative

mobility, as there is not an equal number of individuals in each subgroup, and income

is not normalized to form quintiles for every birth cohort. Additionally, conceptual-

izing absolute mobility as a Markov process introduces useful mathematical features,

such as the stationary distribution. This distribution reveals the long-term proba-

bility of individuals belonging to an income subgroup and is useful in understanding

and comparing the implied long-term trends of current mobility dynamics over time.
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Chapter 2

Markov Model Mathematical

Formulation

This chapter first mathematically defines an arbitrary Markov model and then pro-

vides a parameterization framework for relative and absolute intergenerational mobil-

ity. Subsequently, mathematical features like the stationary distribution and mixing

times of Markov matrices are discussed in the context of intergenerational mobility.

Lastly, model assumptions are stated and examined in light of our specific parame-

terization.

2.1 Markov Model Definition

LetX = {Xt, t 2 N} be an arbitrary Markov chain with state spaceD 2 {d1, d2, . . . , dk}.

Throughout this paper, we use the notation:

pi,j := P{Xt+1 = j | Xt = i}, i, j 2 D (2.1)

for all n � 0. We call pi,j the transition probability from i to j, and the matrix

P = [pi,j]i,j2D is called the transition probability matrix defined below:

10



P =

2

66666664

p1,1 p1,2 . . . p1,k

p2,1 p2,2 . . . p2,k

...
...

. . .
...

pk,1 pk,2 . . . pk,k

3

77777775

. (2.2)

The transition probability matrix P satisfies the following properties:

0  pi,j  1 (2.3)

X

j2D

pi,j =
X

j2D

P{Xt+1 = j | Xt = i} = 1. (2.4)

In addition to the transition probability matrix, the initial state distribution of a

Markov chain can be defined as

Px0{·} := P{·|X0 = x0}. (2.5)

2.2 Model Parameterization

Intergenerational mobility can be conceptualized by defining a simplified Markov

model for each child birth cohort and analyzing changes in transition probabilities

over time. A Markovian transition framework is valuable for modeling mobility, as

it provides insights into the likelihood of a child belonging to a particular subgroup,

given information about their parents’ subgroup. The mathematical formulation is

defined as follows:

Time Period (t)

To model transition probabilities over a generational shift from parent to child, a

Markov parameterization only necessitates one time step. Therefore, t 2 {0, 1} with

11



t = 0 representing the parent generation and t = 1 representing the child generation.

State Space (D)

The state space is defined by income subgroups that divide the distribution of income

in a particular birth cohort. Note that these subgroups are uniquely parameterized

for relative and absolute mobility. For relative mobility, the income distribution

is subdivided into quintiles, while for absolute mobility, it is subdivided into fixed

income buckets, for example, individuals making between $2,700 and $4,800. The

specific parameterization of the state space for relative mobility is found in Section

4.1.1, whereas the parameterization for absolute mobility is detailed in Section 5.1.1.

Although the construction of these subgroups varies fundamentally between rela-

tive and absolute mobility, both parameterizations subdivide the income distribution

into five distinct subgroups. These five subgroups can be defined as follows:

D = {�1, �2, . . . , �5} (2.6)

Here, �i 8 i 2 1, 2, . . . , 5 represents the five distinct income subgroups, with �1

corresponding to the lowest income grouping and �5 to the highest income grouping.

Transition Probability Matrix (Pc)

The Markov transition matrix encapsulates the probability of a child belonging to

a specific income subgroup, given their parents’ income subgroup. Note that this

subgroup is defined by the state space of the relative or absolute mobility param-

eterization. Specifically, each entry pi,j represents the probability of transitioning

from income subgroup i in the parent generation to income subgroup j in the child

generation where i, j 2 {1, 2, . . . , 5}.

While state spaces di↵er between parameterizations, a more abstract transition

matrix Pc can be defined below:
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Pc =

2

66666664

p1,1 p1,2 . . . p1,5

p2,1 p2,2 . . . p2,5

...
...

. . .
...

p5,1 p5,2 . . . p5,5

3

77777775

. (2.7)

The subscript c corresponds with the transition matrix for a specific child birth

cohort. For example, P1968 is the transition matrix for children born in 1968. Ad-

ditionally, note that each row transition probability vector sums to one within each

birth cohort such that Equations 2.3 and 2.4 are satisfied.

Figure 2.1: Visual Representation of Markov Transition Matrix (Pc)

Each element of the state space, �i, has an edge leading to every other element,
including itself, since a child can transition to any possible income subgroup.

�1

�2

�3

�4�5

p11

p22

p33

p44p55
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Initial State Distribution (Px0{·})

The initial state distribution vector is deterministic as the income subgrouping of

the parent generation in both the relative and absolute mobility parameterization is

known from empirical data. In e↵ect, there’s no randomness in the state space D

when t = 0 (the parent generation).

2.3 Markov Mathematical Properties

Markov transition matrices possess intrinsic characteristics that hold qualitative sig-

nificance when modeling intergenerational mobility. Two noteworthy characteristics

are the stationary distribution and mixing time, defined below:

Stationary Distribution

The stationary distribution represents the long-run probability distribution of the

states in a Markov chain. Mathematically, the stationary distribution can be ex-

pressed as the vector ⇡ that satisfies the condition ⇡P = ⇡, where P is the Markov

transition matrix. This condition implies that ⇡ is an eigenvector of P , as its span

remains unchanged after successive transformations by P . However, it is important to

note that ⇡ corresponds to the largest eigenvector of the transition matrix with a cor-

responding eigenvalue of 1. This is because the stationary distribution for a stochastic

matrix must remain a valid probability vector, thereby satisfying Equations 2.3 and

2.4. The steps below outline the computational process:

1. Construct the transition probability matrix (P ) for the Markov chain.

2. Find the eigenvalues (�) and corresponding eigenvectors (v) of the transition
probability matrix (P ) by solving Pv = �v.

3. Identify the eigenvalue � = 1 and find its corresponding eigenvector (v).

4. Normalize the eigenvector (v) by taking the Euclidean norm such that ⇡ = v

|v| .
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In the context of intergenerational mobility, the stationary distribution indicates

the long-term equilibrium probability of an individual belonging to a specific income

subgroup. Note that while our parameterization focuses on a single generational leap,

the stationary distribution reflects the equilibrium implied by repeated generational

shifts within a given transition matrix.

Since transition matrices (Pc) are calibrated per birth cohort, the stationary distri-

bution can be analyzed over time to observe changes in the equilibrium distribution.

This analysis o↵ers insights into the long-term e↵ects of current patterns in intergen-

erational mobility if they were to persist. By examining the stationary distribution,

we can gain a better understanding of absolute mobility, especially since the prede-

fined income buckets highlight long-term implied changes in the distribution of these

income categories. However, the stationary distribution has limited qualitative use

in analyzing relative mobility by definition, as it is defined by quintiles where 20% of

the population is always in each grouping.

Mixing Times

The mixing time of a Markov process is a measure of how quickly the process converges

to its stationary distribution. The stationary distribution of a Markov process with

transition matrix Pc is the normalized eigenvector corresponding to the largest eigen-

value. However, the rate of convergence to the stationary distribution is determined

by the second-largest eigenvalue of the transition matrix. Specifically, the mixing

time (tmix) for a stochastic matrix is a function of the spectral gap (�Gap = �1��2).

Since �1 corresponding to the largest eigenvector is 1, tmix is proportional to �Gap:

tmix =
1

�GAP

=
1

1� �2
(2.8)

In the analysis of mixing times, the specific value of the mixing time computed
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does not hold significant relevance within our mathematical formulation. Rather,

the significance lies in observing the relative increase or decrease through time series

analysis. A relatively shorter mixing time suggests that the Markov process converges

more rapidly to its stationary distribution, indicating higher intergenerational mobil-

ity. This implies that it requires fewer generations for the distribution of individuals

or families across socioeconomic states to become independent of their initial state.

Conversely, a relatively longer mixing time denotes a slower rate of convergence to-

wards the stationary distribution, which implies lower intergenerational mobility and

greater persistence. This scenario indicates that individuals are more likely to remain

within their socioeconomic states over multiple generations, experiencing limited op-

portunities for upward or downward mobility.

2.4 Delta Matrix

To quantify di↵erences in transition probabilities across birth cohorts, we can define

an arbitrary matrix that encapsulates observed di↵erences between two transition

matrices (P b, P a):

�P = P
b � P

a =

2

66666664

p
b

1,1 � p
a

1,1 p
b

1,2 � p
a

1,2 . . . p
b

1,5 � p
a

1,5

p
b

2,1 � p
a

2,1 p
b

2,2 � p
a

2,2 . . . p
b

2,5 � p
a

2,5

...
...

. . .
...

p
b

5,1 � p
a

5,1 p
b

5,2 � p
a

5,2 . . . p
b

5,5 � p
a

5,5

3

77777775

(2.9)

The �P matrix enhances the robustness of mobility models by directly comparing

the di↵erences in transition probabilities across specific birth cohorts. It serves a

critical function by enabling the analysis of observed changes in key mobility measures.

For example, it examines the likelihood that an individual remains in the lowest

income subgroup if their parents were also in the lowest income subgroup (pb1,1�p
a

1,1).
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2.5 Model Assumptions

To calibrate mobility dynamics via a Markov process the following are key assump-

tions:

Markov Property

The Markov property states that the probability of transitioning to the next state

depends only on the current state. Mathematically this property can be denoted as:

P (Xn = x | Xn�1 = x
0
, . . . , X0 = x0) = P (Xn = x | Xn�1 = x

0) (2.10)

In models of intergenerational mobility, the assumption is often made that income

depends primarily on the income subgroup of the immediate prior generation rather

than on those further back. This assumption aligns with the intuitive understanding

that parents’ economic circumstances, resources, and behaviors exert a stronger and

more direct influence on their children’s economic outcomes than extended family

history.

Discrete Time Steps

In discrete-time models, we examine a system’s state at designated points in time,

tracking its progression through distinct steps rather than continuous change. In the

formulation of the Markov transition matrix presented in this section, the time step

represents a generation change from parent to child. Specifically, t = 0 corresponds

to observations of parental income data while t = 1 corresponds to observations of

child income data.
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Discrete State Space

The Markov process is assumed to operate within a finite state space defined by five

income subgroupings (D) for each birth cohort. These income subgroupings form the

basis for the relative and absolute mobility formulations and are both discrete but

distinctively defined.

Other

In this section, the parameterization of the Markov model obviates the need for

the conventional assumptions often required to calculate the stationary distribution.

These assumptions include time-homogeneity, where transition probabilities between

time steps are invariant over time; irreducibility, denoting the possibility of transi-

tioning from any state to any other state within the system; and aperiodicity, which

refers to the absence of cyclical patterns or loops within the process.

This parameterization does not require these assumptions because the transition

matrices are calibrated on a single generational leap from parent to child. Such an

approach emphasizes transitions from one state to another without having to account

for the passage of time beyond a single generational change or the long-term behavior

of the system.
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Chapter 3

Data

This study utilizes panel data extracted from publicly accessible income datasets to

calibrate Markov models for analyzing relative and absolute income mobility. This

chapter o↵ers an overview of the data aggregation and cleaning processes necessary

to ensure an e↵ective exploration of intergenerational mobility dynamics.

3.1 Sourcing

The foremost publicly accessible repository of longitudinal income data is the Panel

Study of Income Dynamics (PSID), an ongoing study administered by the University

of Michigan’s Institute for Social Research (Survey Research Center, 2023). This

paper leverages the comprehensive scope of the dataset, spanning its inaugural year

of 1968 to the present.

The PSID began in 1968 as a nationally representative sample of over 18,000

individuals within the United States. Data on employment, income, wealth, marriage,

education, and other factors have been repeatedly collected for each individual, with

the same data collected on subsequent descendants. Throughout the last five decades,

the dataset has expanded to reflect more than 85,000 individuals. The table below
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presents an overview of the downloaded variables along with descriptors.

Table 3.1: Summary of PSID Variables

These variables were extracted from the PSID database. All other variable options
were deselected, with default settings retained. Note that these variable codes are
specific to the 1968 dataset; codes for equivalent data in subsequent years will di↵er.

Category Variable Description

Identification ER30000 Release number

ER30001 Interview number

ER30002 Person number

ER32052 Individual’s cohort year

Family ER30003 Relationship to family head

ER32009 Mother’s ID

ER32010 Mother’s Person Number

ER32011 Mother’s Birth Year

ER32016 Father’s ID

ER32017 Father’s Person Number

ER32018 Father’s Birth Year

Personal ER32000 Sex

ER32004 Age

ER30005 Marital Status

Income ER30012 Total individual income

The resulting output is a dataset beginning in 1968 with subsequent yearly data

corresponding to the variables in Table 3.1. Note that after 1997, the PSID datasets

were not consistently released every year (just a few years with no data collected). To

manage this issue, we retrospectively compute necessary values by using previously

gathered data on those individuals and filling in parameters for the missing year.

For any missing income variables, we update the prior year’s income figure by im-

plementing an adjustment factor that mirrors the income growth experienced during

the relevant period. This adjustment is based on the individual’s position within the

income distribution (their income percentile) and the rate at which income changed

for that specific percentile. Data for calculating income growth at the percentile level
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is derived from the Integrated Public Use Microdata Series (IPUMS), specifically the

Current Population Survey (CPS) which provides yearly 1% samples of the population

(Flood et al., 2023).

3.2 Cleaning

In preparation for analysis, income data within yearly PSID datasets is adjusted,

repaired, and aggregated for balance and consistency. The table below details the

cleaning methods conducted on the raw PSID files.

Table 3.2: Documentation for PSID Clean-Up

These are the two primary functions to reorganize the data from the PSID database.

Function Description

Clean

Processes the downloaded PSID data file for a specified year. Ad-
dresses missing values and inconsistencies, generates additional vari-
ables, and unifies formats across reporting years to account for variable
additions.

Reshape
Consolidates PSID files into a unified dataset and structures individ-
ual entries into family units, facilitating the streamlined retrieval of
parental data.

The following subsections o↵er a comprehensive overview of each cleaning process

function. Note that this same dataset is used for both the relative and absolute

mobility Markov calibration.

3.2.1 Clean

The cleaning function initiates an iterative process on the downloaded PSID data,

starting from the initial year of 1968. First the function identifies and removes rows

that have missing data in key columns related to parental identification, sex, age, and

income. It is important to note that rows with insu�cient parental linking data are
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also excluded at this stage. This ensures that the subsequent reshaping analysis is

conducted with complete information. Furthermore, the function creates a new vari-

able for unique identification (ID), which merges the release year, interview number,

and individual person number. This unique identifier is vital for accurately tracking

individuals over time. The ID field allows for the inclusion of new individuals through

birth, adoption, or marriage, facilitating a comprehensive longitudinal analysis.

Furthermore, the function addresses inconsistencies in income reporting across

di↵erent years of the PSID. It ensures that when additional income variables are

introduced in later years, they are appropriately standardized. This standardization

process adjusts income figures to reflect a consistent metric, specifically aggregate

taxable income, in contrast to the post-tax income reported in certain years.

As a consequence of these cleaning steps, the number of observations in each data

file decreases. This decrease is more pronounced in earlier years (approximately a 30%

reduction) and less substantial in later years (roughly a 5% decrease). This results in

a standardized dataset with approximately 12,000 observations per year until 1982,

followed by an increase to approximately 18,000 observations per year until 1990, and

roughly 26,000 observations per year afterward.

3.2.2 Reshape

The reshaping function reorganizes cleaned PSID data files into an aggregated dataset

structured around family units. We note that creating family units based on data from

a single survey year presents challenges, primarily due to the possibility of children

being part of more than one household or family. This situation often arises from the

merging of families that necessitate modifications to the dataset.
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To address these challenges and ensure the precise construction of family units,

this study implements several steps:

1. A foundational family unit, benchmarked against the 1968 cohort (marking
the inaugural year of the dataset), is established through the assignment of
a distinct FAMID to a primary member within the family structure. For the
purposes of this analysis, the primary member is determined to be the mother
to accommodate any single-parent households.

2. After the initial identification process, income and age data for the same set
of individuals are integrated. This integration uses subsequent PSID datasets
and incorporates the data into the established family units, utilizing the unique
ID markers generated during the data cleansing phase. Note that with each
additional dataset integrated, a verification process is conducted to incorporate
new family members into the existing family units. For instance, if a child’s
birth occurs five years after the 1968 baseline, the respective child’s data is
added to the pertinent family unit.

3. To expand the dataset, family entities identified in post-1968 surveys, which
were not part of the original dataset, are also assigned a FAMID to represent a
new family unit. This procedure also applies to families that have undergone
splits.

The resulting output is a restructured income file that is organized by family units

with longitudinal income data.

3.3 Pre-processing

Income data from PSID must be adjusted for inflation to accurately reflect di↵erences

in purchasing power across dataset years. This adjustment is critical for analyzing

both relative and absolute mobility. For the relative mobility bootstrap analysis

(Section 4.2), inflation adjustment ensures statistical significance by adjusting income

in di↵erent years to the same reference year. Table 4.2 details the methodologies

and applications of this inflation adjustment for the statistical significance tests of

relative mobility. However, inflation adjustment is generally unnecessary for analyses

of relative mobility, except for statistical significance tests. This is because relative

mobility depends on quintile rankings within a cohort’s income distribution, which
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are una↵ected by the uniform scaling of income. Conversely, analyses of absolute

mobility, which compare nominal income values across generations, require inflation

adjustment.

Given that all data is in US dollars, to create an apples-to-apples comparison,

we can adjust dollars for inflation using the Consumer Price Index (CPI). The CPI

tracks the average change over time in the prices paid by urban consumers for a

market basket of consumer goods and services. In this paper, historical CPI values

are retrieved by referencing the Federal Reserve Economic Data (FRED) publicly

available datasets (U.S. Bureau of Labor Statistics, 2023).

Relative Mobility

To adjust older nominal dollar values to current prices, we multiply the original

prices by the current CPI (as of the end of 2023 in our case) and then normalize by

the original CPI corresponding to the year of the original price. This is defined in

Equation 3.1 below:

AVC =
AO ⇤ CPIC

CPIO
(3.1)

Here, AVC represents the adjusted value in current dollars (2023 in this case), AO

denotes the amount in original dollars (dependent on the year being adjusted), CPIC

is the current Consumer Price Index, and CPIO signifies the original CPI (dependent

on the year being adjusted).

Absolute Mobility

To adjust newer nominal dollar values to previous prices, we multiply the amount in

current dollars by the old CPI we are benchmarking to and then normalize by the

current CPI corresponding to the year of calculation. This is defined in Equation 3.2

below:
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AVO =
AC ⇥ CPIO

CPIC
(3.2)

Here, AVO represents the adjusted value back to the original reference year (1968

in the absolute mobility parametrization), AC denotes the amount in current dol-

lars (dependent on the year being adjusted), and CPIC and CPIO carry the same

meanings as before.
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Chapter 4

Relative Mobility Markov Models

This chapter presents an overview of the mathematical and computational processes

involved in parameterizing relative mobility models. It then compares the transition

matrices for the 1968 and 1997 birth cohorts, testing for statistical significance. The

chapter concludes by providing time series outputs of the diagonal and outer edges of

the transition matrices, which correspond to levels of income persistence and mobility

at the extremes. The results indicate that intergenerational mobility, when modeled

on a relative basis using income quintiles, has remained consistent between 1968 and

1997 birth cohorts.

4.1 Parameterization

4.1.1 Model

To parameterize the Markov transition matrix initially defined in Section 2.2 for

relative mobility, the state space (D) needs to be explicitly defined to create five

distinct income subgroupings. The time period (t), transition probability matrix (Pc),

and initial state distribution (Px0 ·) can be directly parameterized from the definitions

in Section 2.2.
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For relative mobility, the state space is defined as income quintiles, such that

D = {�1, �2, . . . , �5}, where �1 is the lowest income quintile, and �5 is the highest

income quintile. Thus, the Markov transition matrix (Pc) for relative mobility models

a child’s probability of belonging to a certain income quintile given information on the

parental income quintile for a birth cohort c. Each entry pi,j represents the probability

of transitioning from income quintile i in the parent generation to income quintile j

in the child generation, where i, j 2 {1, 2, . . . , 5}. It is important to note that both

parent and child income are measured at 26 years of age in this model.

4.1.2 Data

To formulate the census data for the relative mobility parameterization outlined

above, several data processing steps are conducted. The table below synthesizes the

various methods to create the transition probability matrix Pc for relative mobility.

Table 4.1: Relative Mobility Data Parameterization Overview

These are the three primary functions to create the Markov transition matrix for
each child birth cohort. Note that the pivotal assumption is that transition matrices
are made from parent-child income data when they were both 26 years old.

Function Description

Quintile Ranks

Calculates quintile ranks for each data entry based on individual

income. Note that quintiles are computed by comparing individuals

of the same age within a birth cohort’s dataset.

Family Linking

Links quintile information for parents to their respective children’s

records using the family unit structures created in Section 3.2.2. For

children who have quintile information available for both parents,

the parent with the higher quintile rank is selected.

Matrix Calculation

Computes the transition probability estimates for each element

of the Markov transition matrices using the matched parent-child

quintile data over the entire distribution of data for each child birth

cohort.

The resulting output given the datasets available is an array containing a Pc
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transition matrix corresponding to a birth cohort c 2 {1968, 1969, . . . , 1997}.

4.2 Results

The first (P1968) and last (P1997) transition matrices are shown below, spanning 29

birth years apart:

P1968 =

2

666666666664

0.300 0.218 0.189 0.214 0.079

0.189 0.209 0.237 0.218 0.146

0.138 0.190 0.197 0.272 0.203

0.081 0.144 0.202 0.263 0.309

0.099 0.096 0.171 0.222 0.412

3

777777777775

(4.1)

P1997 =

2

666666666664

0.313 0.190 0.197 0.215 0.084

0.170 0.200 0.249 0.231 0.150

0.140 0.202 0.188 0.270 0.200

0.087 0.142 0.207 0.261 0.302

0.088 0.128 0.159 0.243 0.382

3

777777777775

(4.2)

Both P1968 and P1997 transition matrices suggest intergenerational income persis-

tence, with partial diagonal dominance indicating a relative “stickiness” of income

quintile status from parents to children. In both matrices, the highest probabilities

are p1,1 and p5,5, suggesting a high likelihood of income persistence at the extreme

quintiles. The lowest probabilities are p1,5 and p5,1, indicating limited mobility at the

extremes of the income distribution.

For transition probabilities o↵ the diagonal, both matrices generally show higher

probabilities adjacent to the diagonal elements than farther away within the same

row. This indicates that when mobility does occur, it is more likely to involve moving

to a neighboring quintile rather than a significant jump in relative income standing.

28



4.2.1 Delta Matrix

To analyze how intergenerational income mobility patterns have changed over the

dataset, we can construct a delta matrix (�P ) conceptualized in Section 2.4 by sub-

tracting the transition probability matrix of an earlier birth cohort from that of a

later birth cohort. Here, �P is explicitly defined as:

�P = P1997 � P1968 =

2

666666666664

0.013 �0.028 0.008 0.001 0.005

�0.019 �0.009 0.012 0.013 0.004

0.002 0.012 �0.009 �0.002 �0.003

0.006 �0.002 0.005 �0.002 �0.007

�0.011 0.032 �0.012 0.021 �0.030

3

777777777775

(4.3)

Given that P1997 and P1968 have the same dimensionality, we can compute an

element-wise division of matrix elements to observe the percentage di↵erences rela-

tive to P1968, for illustrative purposes. We define matrix C as the full matrix of these

element-wise divisions in percentages as
h
cij =

⇣
aij

bij
� 1

⌘
⇥ 100

i
, where cij is the com-

parison element in percent, aij is the element in P1997, and bij is the corresponding

element in P1968. The computed matrix C is shown below:

C =

2

666666666664

4.3 �12.8 4.2 0.5 6.3

�10.1 �4.3 5.1 6.0 2.7

1.4 6.3 �4.6 �0.7 �1.5

7.4 �1.4 2.5 �0.8 �2.3

�11.1 33.3 �7.0 9.5 �7.3

3

777777777775

(4.4)

An element-wise comparison of the P1968 and P1997 transition matrices reveals that

the probabilities of transitioning between di↵erent income quintiles across parent-child

generations are quite similar. Qualitatively, �P suggests that the broad dynamics of

intergenerational income mobility have not undergone substantial changes between

the 1968 and 1997 birth cohorts.
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Transition Probability Statistical Significance

To assess whether the observed di↵erences in the probabilities of transitioning from

parent to child income quintiles between P1968 and P1997 are statistically significant,

we can employ a bootstrap test. Traditional statistical tests make assumptions about

the underlying data distribution, which may not hold for income mobility data where

the income distribution is typically right-skewed and variable across years. The table

below describes the steps involved in using bootstrapping to test whether the di↵er-

ences in transition probabilities between P1968 and P1997 are statistically significant:

Table 4.2: Bootstrap Process Overview for Statistical Significance

These are the primary steps to conduct a bootstrapping analysis on the income dataset.

Note that the process is repeated 5,000 times (B = 5, 000) to create a distribution for each

element of �P , where each element represents a specific transition probability.

Function Description

Income Adjustment

Scales the income values for both chosen birth cohort years to

be equivalent to 2023 income levels (relative mobility analysis

requires income to be scaled to a common reference year for

quintile calculation). The inflation adjustment process for

relative mobility is described by Equation 3.1.

Random Selection

Resamples the data for both chosen birth cohorts (with re-

placement) and maintains the original sample size. Note for

each birth year, data is resampled from the combined dataset

irrespective of birth year to test if segmenting by birth year

is statistically significant from splitting the data randomly.

Matrix Calculation

Computes income quintile ranks for the two newly generated

random samples (one for each birth cohort) using matched

parent-child data. Then estimates transition probabilities for

each element of the transition matrix, as illustrated in Table

4.1.2. Note the process is carried out separately for the two

random samples representing the di↵erent birth cohorts.

Calculating Test Statistic

Evaluates the � matrix, which measures the di↵erence in

transition probability matrices between two birth cohorts.

Here, the two transition probability matrices are created

through bootstrapping and under the assumption that the

birth cohorts are identical in terms of outcomes for children.

Here, the null hypothesis (H0) posits no variation in transition probabilities be-

tween the 1968 and 1997 birth cohorts, while the alternative hypothesis (H1) asserts
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such a di↵erence exists. Note that several hypothesis tests are conducted concurrently

for each element in the delta matrix.

Table 4.3: Summary of Statistical Significance of Delta Matrix Elements

All observed di↵erences in transition probabilities in �P defined in Equation 4.3 are not

statistically significant at ↵ = 0.05 when resampling the combined dataset irrespective of

birth year (B = 5, 000). Note that the P value is calculated as the proportion of generated

results that are as extreme or more extreme than the observed value.

Transition Probability Observed Value P value

p1,1 0.013 0.252

p1,2 �0.028 0.141

p1,3 0.008 0.384

p1,4 0.001 0.894

p1,5 0.005 0.521

p2,1 �0.019 0.167

p2,2 �0.009 0.313

p2,3 0.012 0.234

p2,4 0.013 0.224

p2,5 0.004 0.573

p3,1 0.002 0.761

p3,2 0.012 0.234

p3,3 �0.009 0.294

p3,4 �0.002 0.775

p3,5 �0.003 0.640

p4,1 0.006 0.457

p4,2 �0.002 0.759

p4,3 0.005 0.477

p4,4 �0.002 0.756

p4,5 �0.007 0.372

p5,1 �0.011 0.296

p5,2 0.032 0.172

p5,3 �0.012 0.276

p5,4 0.021 0.182

p5,5 �0.030 0.136
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From the bootstrap analysis conducted in Table 4.3, none of the observed dif-

ferences in transition probabilities are statistically significant at the ↵ = 0.05 level,

which fails to reject H0. However, certain transition probabilities, specifically p1,2,

p2,1, and p5,5, with P values of 0.141, 0.167, and 0.136, respectively are statistically

significant at the ↵ = 0.15 level. The lower P values suggest that the corresponding

observed di↵erences in transition probabilities have the strongest evidence towards

being di↵erent between the two cohorts, although not statistically significant at typ-

ical levels of 5%. Notably, p5,5 with an observed di↵erence of 0.03 and a P value

of 0.136 is the most interesting, as it represents a decrease in income persistence for

children of the highest income quintile between the 1968 and 1997 birth cohorts.

Nevertheless, the bootstrapping results indicate that the observed variations in

transition probabilities, as represented by the�P matrix, can be attributed to random

fluctuations at the 5% significance level. Even when considering a significance level

of ↵ = 0.15, there are minimal discernible changes in transition probabilities. This

supports the initial observation from the element-wise comparison, suggesting that

levels of intergenerational income mobility have remained consistent between the 1968

and 1997 birth cohorts.

Delta Matrix Statistical Significance

Although individual transition probabilities are not statistically significant, we can

repeat the bootstrapping procedure outlined in Table 4.2 to determine whether in

aggregate the observed di↵erences in the transition matrices P1968 and P1997 are sta-

tistically significant. Here, instead of comparing individual elements of the transition

probability matrix as before, we compare the Frobenius norm of the observed �P ma-

trix with the Frobenius norms of bootstrapped � matrices that are randomly sampled

from the combined dataset regardless of birth year. This approach emphasizes the

total magnitude of change in the transition matrices rather than on individual prob-
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ability shifts.

The Frobenius norm is a matrix norm that represents the square root of the sum

of the absolute squares of the matrix elements. It provides a single scalar value that

captures the overall magnitude of the matrix. Notably due to the squaring of each

element before summing, the Frobenius norm is always positive regardless of the

individual signs of the matrix elements. The Frobenius norm for the observed �P in

Equation 4.3 is defined below:

k�PkF =

vuut
5X

i=1

5X

j=1

|�ij|2 = 0.068 (4.5)

Here, H0 posits that there is no aggregate di↵erence in the transition probability

matrices P1968 and P1997, whereas H1 suggests that an aggregate di↵erence exists

between the transition probability matrices.

Table 4.4: Summary of Statistical Significance of Aggregate Delta Matrix

The observed Frobenius norm of �P defined in Equation 4.3 is not statistically significant

at ↵ = 0.05 when resampling the combined dataset irrespective of birth year (B = 5, 000).
Note that the P value is calculated as the proportion of generated results that are as

extreme or more extreme than the observed value.

Observed Value P value

0.068 0.112

The bootstrap analysis conducted in Table 4.4 on the aggregate observed di↵er-

ences in transition matrices P1968 and P1997 indicates that the aggregate observed

di↵erences are not statistically significant at the ↵ = 0.05 level, which fails to reject

the null hypothesis H0. Even though the P value of the aggregate bootstrap anal-

ysis is lower than all the element-wise analyses, a similar result of intergenerational

income mobility remaining stable when comparing the 1968 and 1997 birth cohorts

can be inferred.

However, the observed di↵erences in transition matrices at an aggregate level are
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significant at the 15% level. Yet, this hypothetical statistical significance provides

minimal qualitative insight. The Frobenius norm, being inherently positive and scalar

by definition, obscures information about the directionality of mobility, as well as the

specific transition probabilities that represent real changes in income mobility.

4.2.2 Time Series

The following figures present a temporal comparison of select transition probabilities

from Pc where c 2 {1968, 1969, . . . , 1997}. As a reminder, the first income quintile

corresponds to the lowest income subgroup, and the fifth quintile corresponds to the

highest. Additionally, note that parent-child income is measured when both groups

were 26 years old.

Figure 4.1: Probability of Child Income Quintile Persistence

The likelihood that a child remains in the same income quintile as their parents
appears unchanged for children born between 1968 and 1997. Notably, the highest
probabilities correspond to remaining in the highest or lowest quintiles.
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Figure 4.2: Probability of Child Quintile from Bottom Parental Quintile

Conditional on having a parent in the lowest-income quintile, a child is most likely
to remain in the bottom quintile and least likely to reach the top quintile, with the
remaining quintiles having a roughly equal probability. These probabilities remain
steady across birth cohorts from 1968 to 1997.

Figure 4.3: Probability of Child Quintile from Top Parental Quintile

Conditional on having a parent in the highest-income quintile, a child is most likely
to remain in the top quintile, followed by the fourth, third, second, and lowest
quintiles, respectively. These rates exhibit little trend across birth cohorts.
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Figure 4.4: Probability of Child Reaching Bottom Quintile

The probability of a child belonging to the bottom quintile decreases as their
parental income quintile increases. The likelihoods remained consistent between the
1968 and 1997 birth cohorts.

Figure 4.5: Probability of Child Reaching Top Quintile

The probability of a child belonging to the top quintile increases as their parental
income quintile increases. The likelihoods remained consistent between the 1968
and 1997 birth cohorts.
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The time series plots of specific transition probabilities within Markov transition

matrices Pc, where c 2 {1968, 1969, . . . , 1997} suggest that intergenerational income

mobility on a relative basis remained stable between 1968 and 1997 birth cohorts at

the income age of 26. Consistently, higher variance in probabilities appears before

1980, which can likely be explained by the smaller sample size pre-1980 rather than an

underlying year-to-year variation. Ultimately, the time series analysis of specific tran-

sition probabilities supports the conclusions of the delta matrix analysis conducted

on the endpoints of the dataset (P1968 and P1997), indicating that levels of intergen-

erational mobility on a relative basis are consistent across the 29-year period. It is

important to note, however, that this stability pertains specifically to this paper’s

parametrization of intergenerational mobility defined by relative income quintiles.
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Chapter 5

Absolute Mobility Markov Models

This chapter provides an overview of the mathematical and computational processes

involved in parametrizing absolute mobility models. It then compares transition

matrices corresponding to the 1968 and 1997 birth cohorts and tests for statistical

significance. The chapter concludes with time series outputs for the diagonal and

outer edge entries of the transition matrix, as well as the stationary distribution and

mixing times. Results indicate that intergenerational mobility modeled by absolute

mobility in predefined income buckets has changed over time. For the birth cohorts

from 1968 to 1997, there is a discernible trend showing that children are increasingly

likely to move into higher income buckets compared to their chances of remaining

in middle-income buckets, while transitions to the lowest income bucket remain rela-

tively unchanged.

5.1 Parameterization

5.1.1 Model

To parametrize the Markov transition matrix defined in Section 2.2 for absolute mobil-

ity, the state space (D) needs to be explicitly defined in five distinct income subgroups.
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Similar to relative mobility, the time period (t), transition probability matrix (Pc),

and initial state distribution (Px0 ·) can be directly parameterized from the definitions

in Section 2.2.

For absolute mobility, the state space is defined as five income buckets such that

D = {�1, �2, . . . , �5}, where �1 is the lowest income bucket, and �5 is the highest

income bucket. The income buckets are defined by the quintiles of the first year in

the dataset, which is 1968 in our case. Hence, the state space for absolute mobility

can be explicitly defined in 1968 dollar quintiles as follows:

D =

2

666666666664

�1

�2

�3

�4

�5

3

777777777775

=

2

666666666664

[0, 780)

[780, 2,700)

[2,700, 4,800)

[4,800, 7,000)

[7,000, 1)

3

777777777775

(5.1)

In this study, the number of individuals representing the parent generation of 1968

remains fixed across income buckets by definition. However, subsequent birth cohorts

exhibit varying population sizes within each bucket, reflecting shifts in the income

distribution specific to their respective years.

The decision to base the income bucket cuto↵s on the 1968 income quintiles is a

significant assumption. This approach enables tracking changes in transition probabil-

ities between fixed parent-child income buckets over time, revealing shifts in absolute

mobility. Since the buckets remain constant, it allows for direct observation of how

income transitions have changed compared to the 1968 quintile cuto↵s. Furthermore,

it quantifies the proportion of children experiencing upward or downward income

mobility in absolute dollar terms, compared to their parents’ income bucket.

The Markov transition matrix Pc models the absolute income mobility for a birth

cohort c. It represents a child’s probability of belonging to an absolute dollar income

bucket, given information about the parental income bucket. Specifically, each entry
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pi,j in the matrix represents the probability of transitioning from income bucket i

in the parent generation to income bucket j in the child generation, where i, j 2

{1, 2, . . . , 5}. It is important to note that both parent and child incomes are measured

in absolute dollar terms at age 26.

5.1.2 Data

To formulate the data for the absolute mobility parameterization outlined above,

several data processing steps are conducted similarly to the relative mobility steps

outlined in Table 4.1. The di↵erence lies in the treatment of income data. Instead of

calculating quintile ranks, all income data throughout the dataset is inflation-adjusted

to 1968 dollars using the process outlined in Equation 3.2, and then placed into the

income buckets defined in Equation 5.1.

For children with income bucket information on both parents, the parent with the

higher income bucket is selected. Finally, using the data on paired parent-child income

buckets for each birth cohort, transition matrices are calculated. The output, given

the available datasets, is an array containing a Pc transition matrix corresponding to

each birth cohort c 2 {1968, 1969, . . . , 1997}.

5.2 Results

The first (P1968) and last (P1997) absolute transition matrices are shown below, span-

ning 29 birth years apart:

P1968 =

2

666666666664

0.173 0.363 0.286 0.133 0.045

0.103 0.345 0.300 0.189 0.063

0.114 0.262 0.355 0.152 0.117

0.060 0.253 0.295 0.233 0.159

0.078 0.189 0.240 0.253 0.240

3

777777777775

(5.2)

40



P1997 =

2

666666666664

0.145 0.261 0.304 0.184 0.106

0.111 0.242 0.358 0.157 0.131

0.067 0.194 0.254 0.261 0.223

0.041 0.187 0.283 0.237 0.251

0.035 0.178 0.188 0.223 0.376

3

777777777775

(5.3)

The P1968 transition matrix reveals distinct mobility characteristics. The higher

probabilities along the diagonal suggest a significant tendency for individuals to re-

main within their parents’ income bucket, especially at the extremes of the income

spectrum. There is a notable “stickiness” at p1,1 and p5,5, with a 17% probability of

those in the lowest income bucket remaining there, and a 24% chance for those in

the highest bucket to stay put. In contrast, p1,5 with an 11% probability indicates a

slim chance of moving from the lowest parental income bucket to the highest income

bucket, and p5,1 indicates a 4% probability of a child with parents in the highest

income bucket falling to the lowest income bucket. The middle income buckets show

more fluidity, with the second and third rows depicting a higher likelihood of move-

ment into adjacent income categories rather than remaining stationary. This suggests

a somewhat dynamic middle class with the potential for both upward and downward

mobility.

In contrast, the P1997 transition matrix indicates shifts in mobility dynamics given

the predefined income buckets in Equation 5.1. There appears to be a greater bifurca-

tion at the extremes of the distribution, with p1,1 decreasing, pointing to an increase

in upward mobility in the lowest class. However, p5,5 shows a marked increase in

persistence, with a probability of 38%, which may reflect further consolidation of

wealth. Furthermore, P1997 exhibits higher diagonal elements for the upper income

buckets compared to P1968, suggesting even greater “stickiness” or entrapment at the

top of the income distribution for the later cohort. Conversely, the diagonal elements

for lower income buckets are smaller in 1997, suggesting improved absolute mobility
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out of poverty or low-income levels, relative to the earlier cohort. However, in both

P1968 and P1997, there are generally higher probabilities adjacent to the diagonal in

the same row, indicating that when mobility occurs, it is likely to be to neighboring

income buckets.

Additionally, there appears to be a higher magnitude of transition probabilities

below the diagonal for P1968, representing downward mobility, compared to the cor-

responding upward mobility elements in P1997. This indicates that for the 1968 birth

cohort there was a greater chance of declining or steady income levels. In comparison,

the 1997 birth cohort exhibits a greater chance of income outperformance relative to

the prior generation on an absolute dollar basis.

5.2.1 Delta Matrix

Similar to the relative mobility analysis, a delta matrix (�P ) conceptualized in Section

2.4 can be constructed to directly compare transition probabilities on a per element

basis. Here, �P is explicitly defined as:

�P = P1997 � P1968 =

2

666666666664

�0.028 �0.102 0.018 0.051 0.061

0.008 �0.103 0.058 �0.032 0.068

�0.047 �0.068 �0.101 0.109 0.106

�0.019 �0.066 �0.012 0.004 0.092

�0.043 �0.011 �0.052 �0.030 0.136

3

777777777775

(5.4)

The �P can also be expressed as the percentage di↵erence between the transition

probabilities P1997 and P1968, relative to P1968, for illustrative purposes. We define

C as the matrix of element-wise divisions corresponding to this percentage di↵erence

(see the mathematical definition for C in Section 4.2.1):
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C =

2

666666666664

�16.2 �28.1 6.3 38.3 135.6

7.8 �29.9 19.3 �16.9 107.9

�41.2 �26.0 �28.5 71.7 90.6

�31.7 �26.1 �4.1 1.7 57.9

�55.1 �5.8 �21.7 �11.9 56.7

3

777777777775

(5.5)

An element-wise comparison between P1968 and P1997 reveals a shift away from

downward mobility and towards greater upward mobility over the 29-year period.

This trend is evidenced by negative values below the diagonal entries, indicating the

1968 birth cohort was more likely to transition towards lower income buckets than

their parents. Conversely, positive values above the diagonal suggest that the 1997

birth cohort was more likely to outperform their parents’ income on an absolute

dollar basis. Overall, �P suggests that intergenerational economic dynamics may

have undergone substantial changes between the 1968 and 1997 birth cohorts.

Transition Probability Statistical Significance

To assess the statistical significance of observed changes between transition matrices

P1968 and P1997, we can apply the same bootstrap methodology used for determining

statistically significant di↵erences in the relative mobility parameterization. The pre-

cise process is described in Table 4.2. However, since all income is already deflated to

1968 dollars, the income adjustment step is unnecessary. Similar to relative mobility,

the null hypothesis (H0) posits no di↵erence in transition probabilities between chil-

dren born in 1968 and 1997. The alternative hypothesis (H1) asserts that a di↵erence

exists. Note that we conduct multiple hypothesis tests simultaneously, one for each

element of the transition matrix.
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Table 5.1: Summary of Statistical Significance of Delta Matrix Elements

Of the observed di↵erences in transition probabilities in �P defined in Equation 5.4,
11 are statistically significant at ↵ = 0.05 (*). Several of these di↵erences are also
significant at ↵ = 0.01 (**) and ↵ = 0.001 (***) levels when resampling the
combined dataset irrespective of birth year (B = 5, 000). Note that the P value is
calculated as the proportion of generated results that are as extreme or more
extreme than the observed value.

Transition Probability Observed Value P value

p1,1 �0.028 0.499

p1,2 �0.102 0.023⇤

p1,3 0.018 0.694

p1,4 0.051 0.141

p1,5 0.061 0.023⇤

p2,1 0.008 0.672

p2,2 �0.103 0.000⇤⇤⇤

p2,3 0.058 0.072

p2,4 �0.032 0.202

p2,5 0.068 0.002⇤⇤

p3,1 �0.047 0.016⇤

p3,2 �0.068 0.016⇤

p3,3 �0.101 0.003⇤⇤

p3,4 0.109 0.002⇤⇤

p3,5 0.106 0.000⇤⇤⇤

p4,1 �0.019 0.414

p4,2 �0.066 0.054

p4,3 �0.012 0.775

p4,4 0.004 0.926

p4,5 0.092 0.038⇤

p5,1 �0.043 0.056

p5,2 �0.011 0.714

p5,3 �0.052 0.127

p5,4 �0.030 0.410

p5,5 0.136 0.000⇤⇤⇤
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The bootstrap analysis conducted in Table 5.1 reveals several statistically sig-

nificant transition probabilities. Notably, p2,2, p3,5, and p5,5 are significant at the

↵ = 0.001 level. Consequently, the null hypothesis can be rejected in favor of the

alternative hypothesis for particular elements in the �P matrix. The probabilities

exhibiting the most substantial observed di↵erences are those in the last column,

corresponding to children being in the highest income bucket, and the third row,

representing child outcomes contingent on parents belonging in the middle income

bucket.

The observed di↵erences in the last column suggest an increase in the probability

of ending up in the highest income bucket for all parental income buckets between

the P1997 and P1968 cohorts. This broadly corresponds to children outperforming

their parents in absolute dollars or performing in line if parents were already in the

highest bucket. Conversely, the observed di↵erences within the third row (p3,1, p3,2,

and p3,3) indicate a decrease in the probability of a child remaining in the same or

lower income bucket given a parent in the third income bucket, with observed values

of -0.047, -0.068, and -0.101, respectively. The resulting gains for p3,4 and p3,5 within

the same row suggest that, given parents in the third income bucket, the probability

of outperforming parents in absolute dollars has increased between the 1968 and 1997

birth cohorts.

Relaxing the ↵ = 0.05 level reveals that the observed di↵erences for p2,3, p4,2,

p5,1, and p5,3 are close to statistical significance, with P values of 0.072, 0.054, 0.056,

and 0.127, respectively. Notably, p5,1 exhibits an observed di↵erence of -0.043 between

P1997 and P1968, suggesting greater income persistence as the probability of joining the

first income bucket with the highest parental income bucket has decreased. Broadly,

the statistical significance of the last column and the third row supports the element-

wise comparison, indicating a broader shift towards greater intergenerational upward

mobility on an absolute dollar basis between the 1968 and 1997 birth cohorts.
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Delta Matrix Statistical Significance

To assess the statistical significance of the observed di↵erences in transition matrices

P1997 and P1968 for absolute mobility, a bootstrapping process can be conducted on the

delta matrix for absolute mobility, akin to the relative mobility analysis. Instead of

comparing individual elements, the Frobenius norm of the observed �P is compared

with the distribution of �P under the null hypothesis. Here, H0 posits that there is no

aggregate di↵erence in the transition probability matrices P1997 and P1968, whereas

H1 proposes than an aggregate di↵erence exists between the transition probability

matrices.

The Frobenius norm, defined in Equation 4.5, is a matrix norm that can be cal-

culated for the absolute mobility delta matrix as follows:

k�PkF =

vuut
5X

i=1

5X

j=1

|�ij|2 = 0.339 (5.6)

Table 5.2: Summary of Statistical Significance of Aggregate Delta Matrix

The observed Frobenius norm of �P defined in Equation 5.4 is statistically significant at

↵ = 0.001 (***) when resampling the combined dataset irrespective of birth year

(B = 5, 000). Note that the P value is calculated as the proportion of generated results

that are as extreme or more extreme than the observed value.

Observed Value P value

0.339 0.000⇤⇤⇤

The bootstrap analysis (Table 5.2) reveals a statistically significant di↵erence (at

↵ = 0.001) in aggregate transition probabilities (P1997 and P1968). This supports

the rejection of H0 in favor of H1, implying a di↵erence in transition probabilities

between the 1968 and 1997 birth cohorts under the absolute mobility model defined

by Equation 5.1. However, the Frobenius norm cannot determine the direction of

change in intergenerational mobility due to its scalar and positive properties.
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5.2.2 Time Series

The following figures present a temporal comparison of select transition probabilities

of Pc, where c 2 {1968, 1969, . . . , 1997}. All figures in this subsection display a two-

year rolling average to account for high year-to-year variation. Note that parent-child

income is recorded when both groups were 26 years old.

• Figure 5.1: Depicts the persistence of income buckets from parents to children.

• Figure 5.2: Illustrates the probability of a child belonging to a higher income
bucket than their parents, contingent upon the parental income bucket.

• Figure 5.3/5.4: Charts the bottom and top rows of the transition matrix, re-
spectively, corresponding to the probability of a child’s income bucket given the
bottom and top parental income buckets.

• Figure 5.5/5.6: Displays the bottom and top columns of the transition matrix,
showing the probability of a child attaining the bottom and top income buckets,
respectively, dependent on their parents’ income bucket.

Figure 5.1: Probability of Child Income Bucket Persistence

Income persistence is similar for the lowest and highest income buckets for children
born between 1968-1997. The middle income buckets see less persistence over time,
but the highest earners increasingly remain in their bucket. Notably, children from
the lowest income families tend to move upward given the low income persistence.
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Figure 5.2: Probability of Child Outearning Parental Bucket

The probability of children attaining higher income buckets than their parents
exhibits a slight upward trend from the 1968 to 1997 birth cohorts, indicating
modestly greater absolute upward mobility across income buckets. Notably, these
probabilities decline as parental income increases.

Figure 5.3: Probability of Child Bucket from Bottom Parental Bucket

Conditional on parents in the lowest income bucket, the highest probabilities are
associated with the child attaining the second or third income buckets. Probabilities
stayed relatively stable from the 1968 to 1997 birth cohorts, with a slight rise in the
chance of entering the top income bucket.
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Figure 5.4: Probability of Child Bucket from Top Parental Bucket

Conditional on parents in the highest income bucket, the chances of remaining in
the top bucket rose slightly, with equal chances of falling to middle buckets, and
least likely to drop to the bottom. Transition probabilities, except to the top
bucket, stayed consistent from 1968 to 1997 cohorts.

Figure 5.5: Probability of Child Reaching Bottom Bucket

The probability of a child belonging to the bottom bucket decreases as their
parental bucket increases. The likelihoods exhibit a marginal trend between the
1968 and 1997 birth cohorts.
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Figure 5.6: Probability of Child Reaching Top Bucket

The probability of a child belonging to the top bucket increases as their parent’s
bucket increases. All likelihoods trended upwards between the 1968 and 1997 birth
cohorts, indicating greater upward absolute mobility irrespective of parental bucket.

The time series plots of specific transition probabilities within the Markov tran-

sition matrix Pc, where c 2 {1968, 1969, . . . , 1997} suggest that intergenerational

income mobility on an absolute basis has skewed towards greater levels of upward

mobility between 1968 and 1997 at the income age of 26. Figure 5.2 shows a gradual

upward trend, indicating that children have a higher probability of belonging to an

income bucket greater than their parents, suggesting increased upward mobility. Fur-

thermore, Figure 5.6 indicates that the likelihood of a child reaching the top income

bucket has increased steadily over time across all parental income buckets, suggesting

that upward mobility has become a more likely outcome for children.

However, other transition probabilities have remained stable between the 1968 to

1997 birth cohorts, specifically relating to outcomes with parents in the lowest income

bucket (Figure 5.3) and children ending up in the lowest income bucket (Figure 5.5).

Given the gains over time in the probability of belonging to the higher income buckets,

this implies (since rows sum to 1 in the transition matrix) that the likelihood of joining
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the second or third income bucket has likely slightly decreased in favor of a greater

probability of joining the higher buckets. This suggests that while the di�culty of

getting out of the lowest income bucket may remain similar between the 1968 and

1997 birth cohorts, there is a higher probability that if mobility does occur, it will be

to join one of the buckets at the top of the income distribution.

Across all figures, there is a higher year-over-year variance, which likely corre-

sponds to income being tracked for parent-child pairs at the age of 26. This variance

is less prevalent in the relative mobility analysis, as the income subgrouping is based

on quintiles that generally normalize for this e↵ect across the population. Since the

absolute mobility analysis is dependent on fixed absolute income buckets, this nor-

malization e↵ect does not occur, which creates greater variation year-over-year as the

income distribution changes.

Holistically, the time series analysis of transition probabilities supports the trends

observed in the delta matrix analysis conducted between P1968 and P1997. It suggests

that over time, there is a greater likelihood of children joining the highest income

buckets; however, there are not significant changes in the likelihood of children ending

up in the lowest income bucket. This represents a general shift in levels of intergener-

ational mobility measured on an absolute basis, defined specifically by Equation 5.1,

across the 29-year period of the dataset.

5.2.3 Stationary Distribution & Mixing Times

As introduced in Section 2.3, the stationary distribution for absolute mobility rep-

resents the long-term equilibrium probability of an individual belonging to a certain

income bucket set by Equation 5.1. Similarly, the mixing time defined in Section 2.3

models the time it takes for the Markov process to converge at the stationary distri-

bution. The following figures present a temporal comparison of the implied stationary

distribution and mixing times for the absolute mobility transition matrices.
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Figure 5.7: Stationary Distribution Across Birth Cohorts

The stationary distribution remains relatively stable across the first, third, and
fourth income buckets for the 1968 to 1997 birth cohorts. However, the distribution
for the second and fifth income buckets switches over time, indicating a greater
long-term likelihood of belonging to the highest absolute income bucket.

Figure 5.8: Mixing Times Across Birth Cohorts

The mixing times show little directional trend from the 1968 to 1997 birth cohorts.
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The time series plots of the stationary distribution exhibit patterns closely aligned

with those depicted in Figure 5.1 which plots income persistence on absolute dollar

terms. The overall trends in the stationary distribution suggest that, over the long

term, the stable configuration is one in which more people are in the highest bucket

over time between 1968 and 1997 birth cohorts. Nonetheless, a considerable pro-

portion of children are anticipated to remain entrenched in lower income categories,

reflecting the enduring nature of these segments when defined by absolute income

levels.

Unfortunately, the variance observed in the mixing time of the stationary dis-

tribution is minimal, providing little qualitative insight into trends pertaining to

intergenerational mobility. Remember that the magnitude of the mixing time holds

no significant relevance given the mathematical formulation in Section 2.3, and that

a relative increase in mixing time suggests greater levels of intergenerational income

persistence.

Lastly, note that these observations regarding the stationary distribution and mix-

ing time are specific to scenarios where absolute mobility is accurately characterized

by the defined income buckets in Equation 5.1.
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Chapter 6

Discussion & Conclusions

In this study, we calibrate a set of Markov transition matrices to model intergen-

erational mobility dynamics through the lenses of relative and absolute mobility.

Relative mobility is parameterized by income quintiles recalculated for every birth

cohort, while absolute mobility is defined by predefined income buckets that remain

constant across birth cohorts.

Relative Mobility

Numerous studies have modeled relative mobility through log-log elasticities and rank-

rank correlations. However, to our knowledge, none have parameterized and analyzed

a series of Markov transition matrices over an extended time period. Notably, Chetty

et al. (2014) formulates a Markov transition matrix but only presents findings related

to the last column, representing the probability that a child reaches the top quintile

given various parental income quintiles.

The results from this study’s parameterization of relative mobility suggest no

discernible trends in intergenerational mobility probabilities between the 1968 and

1997 birth cohorts based on time-series data. An element-wise comparison of P1968

and P1997, corresponding to the first and last calibrated transition matrices derived
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from the dataset, suggests no observed di↵erences in transition probabilities at the

5% statistical significance level. Even when relaxing the statistical significance levels

to 15%, only a few transition probabilities exhibit evidence of di↵ering between the

two birth cohorts, and none of these di↵erences were substantial.

The results from this study’s parameterization reflect systematic inertia in socioe-

conomic mobility, where the quintile income ranking of parents significantly influences

the quintile income of children, with these observations remaining consistent over the

29-year period of the dataset. This level of income persistence also coincides with a

lack of substantial jumps in relative mobility, as transitions to neighboring quintiles

are significantly more likely. Broadly, these results suggest that children have the

same likelihood of upward mobility as their parents over the aggregated dataset.

This study’s relative mobility results are holistically analogous to existing liter-

ature. Zimmerman (1992) models relative mobility via log-log elasticities and indi-

cates an intergenerational earnings elasticity of 0.4, signaling a high correspondence

between parent and children’s incomes (elasticity of 1 represents perfect matching).

This supports the higher transition probabilities found consistently across the diago-

nal entries of the transition matrices, with children most likely to remain within the

same quintile as their parents. Furthermore, specific transition probabilities in this

paper’s parameterization are supported by the empirical values reported by Chetty

et al. (2014). Specifically, the vector corresponding to transitions to the highest child

income quintile from the set of parent quintile values in Chetty et al. (2014) is roughly

the same as the normalized last column in our matrix formulation. Thus, Zimmerman

(1992) and Chetty et al. (2014) generally support the conclusions from this paper’s

formulation that levels of intergenerational mobility have remained somewhat steady

between the 1968 and 1997 birth cohorts.

Prior studies, including Lee and Solon (2009), suggest that intergenerational in-

come mobility on a relative basis has remained stable even further back, including
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the 1950 and 1970 birth cohorts, based on a log-log elasticities approach measuring

income at the age of 26. This paper’s results, in conjunction with prior results, sug-

gest that levels of intergenerational mobility may have remained consistent from the

1950 to 1997 birth cohorts given this paper’s formulation of relative mobility.

The stability of intergenerational mobility rates in a relative mobility parametriza-

tion is surprising given higher rates of income inequality over the last several decades.

The Gini coe�cient measures the statistical dispersion of the income distribution,

with the Census Bureau reporting an estimate of 0.481 for 2016, which has increased

by about 20% from 1980 to 2016 (Habib and Perese, 2016). Note that the Gini co-

e�cient is range-bounded from 0 to 1, with perfect equality corresponding to 0 and

perfect inequality corresponding to 1. Krueger (2012) notes a “Great Gatsby Curve”

where greater income inequality, measured by a country’s higher Gini coe�cient, co-

incides with lower economic mobility. Since the US Gini coe�cient has increased,

indicating higher income inequality, Krueger (2012) implies economic mobility levels

should decrease. However, this paper’s results suggest mobility levels have remained

steady despite the jump in inequality. This suggests that while income quintile defi-

nitions have likely grown farther apart in absolute dollars due to increased inequality,

the transition probabilities have not changed overall. The lack of significant observ-

able changes in transition probabilities is likely due to the recalculation of quintiles

across income data, which reduces noise and the e↵ects of changes in the wider income

distribution.

Absolute Mobility

Intergenerational absolute mobility has remained relatively unexplored compared to

relative mobility due to challenges in obtaining suitable datasets. The seminal paper

by Chetty et al. (2017) laid the foundation for absolute mobility research by plotting

the proportion of children earning more than their parents. To our knowledge, no
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subsequent studies have parameterized a series of Markov transition matrices to con-

ceptualize absolute mobility, where the state space is defined by predefined, constant

income buckets.

This paper’s particular parameterization of absolute mobility indicates that inter-

generational mobility has shifted towards an increased probability of upward mobility.

However, the data also suggests that the rates at which children fall into the lowest

income bracket remain consistent between the birth cohorts of 1968 and 1997. In-

dependent of the parental income category, results indicate a higher probability for

children to ascend to an income bucket higher than that of their parents. Addition-

ally, the probability of a child achieving the highest income category saw a progressive

increase across successive birth cohorts, regardless of the parental income category.

Conversely, the transition probabilities represented in the first column of the transi-

tion matrix, which estimated the likelihood of a child joining the first income bracket,

showed no clear trend. This suggests that, due to the increased transition probabil-

ities to higher income categories, the probability of a child advancing to the second

or third income categories decreased correspondingly.

The trends in the time-series data are supported by comparing the P1968 and

P1997 matrices, the first and last transition matrices from the dataset. This �P

comparison shows a shift toward upward mobility across income brackets. Specifically,

the observed data in the last column, which indicates the likelihood of a child reaching

the highest income bracket based on the parents’ income, shows significant positive

di↵erences at the 5% level. The transition probabilities for P1997 relative to P1968

indicate a 136% increase in the chance of a child moving to the highest income bracket

from the lowest parental income bracket. There is also a 57% increase in the chance

of a child staying in the highest bracket when the parents are already in that bracket.

However, di↵erences related to a child ending up in the lowest income bracket were not

significant at the 5% level, except when parents were in the middle income bracket.
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Additionally, the gradual shift towards upward mobility is corroborated by trends

in the stationary distribution vector. This vector suggests that, should the transition

matrices continue to operate in the same manner over generations, there is a higher

likelihood of individuals moving into the top income bucket as the birth cohorts

progress from 1968 to 1997.

Furthermore, there also appears to be income inertia in intergenerational absolute

mobility. The probability of remaining in the same income bucket as one’s parents

has remained consistent across cohorts, with the exception of the highest bucket,

which experienced a notable increase. Moreover, the transition matrices showed no

significant jumps in income buckets, indicating that movements were most likely to

occur to adjacent income buckets. Holistically, these changes in transition probabil-

ities suggest that over time, children are increasingly likely to surpass their parents’

income bucket, particularly for those born in later cohorts.

Yet, the reliability of these findings is moderated by the high annual variation

observed in the time series data and limited existing literature. Thus, it is crucial

to interpret the results presented in Chapter 5 within the context of the specific

parameterization assumptions made in this paper.

The two principal assumptions underpinning the parameterization of absolute mo-

bility are: (1) the use of income data recorded at age 26 for both parents and o↵spring

and (2) the creation of predefined income buckets, along with the corresponding ad-

justment for inflation. These assumptions are likely the primary drivers of the sig-

nificant year-over-year variability and strong upward mobility trends observed in the

time series analysis.

Using age 26 as a benchmark to compare incomes across generations introduces

significant variability, complicating the analysis of economic mobility. Recent trends

indicate a shift in career and education paths, as shown by Pew Research Center

(2023) and Tamborini et al. (2015). Today, fewer young adults hold full-time jobs by
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26, with many instead pursuing higher education. This leads to later entry into full-

time work and a delay in reaching peak earnings. Thus, directly comparing the income

of 26-year-olds from di↵erent generations might not accurately capture changes in

economic mobility. This is because younger generations may be following a di↵erent

economic trajectory influenced by increased educational attainment. Therefore, our

methodology’s failure to adjust the chosen age for income comparison may not fully

reveal the true nature of upward absolute mobility amid evolving societal norms.

Note that these dynamics have a lesser impact on relative mobility since quintiles are

redefined each year, ensuring a more standardized comparison across time.

Moreover, pegging income buckets to quintiles of the 1968 income distribution

and deflating subsequent earnings adds a degree of ambiguity. The median income

in the United States was $3,700 in 1968, $3,600 in 1998, and $3,900 in 2023, based

on empirical data. In contrast, the 80% threshold rose from $7,000 in 1968 to $7,700

in 1998, and further to approximately $8,600 by 2023. This suggests that while

median income remained relatively steady, the income distribution widened above

the median. As a result, the greater likelihood of upward mobility indicated by our

absolute mobility model (defined by fixed buckets) may primarily reflect this widening

income distribution rather than inherently greater levels of intergenerational mobility.

In light of the widening income distribution above the median, the findings in the

absolute mobility delta matrix (Equation 5.4) warrant closer examination. Columns

corresponding to children in higher income buckets show exclusively positive and

statistically significant values. This phenomenon suggests that these results may

be structurally skewed. A simple inflation adjustment likely does not adequately

capture the true magnitude of changes in purchasing power over time, particularly

as the distribution of income above the median shifts upward between the 1968 and

1997 birth cohorts. To better reflect these reductions in purchasing power, a di↵erent

approach that considers both wage growth and inflation may be necessary to better
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model absolute intergenerational mobility.

Ultimately, these assumptions regarding absolute mobility place restrictions on

broader inferences we can make about fundamental shifts in mobility patterns. There-

fore, any conclusions about broader absolute mobility should be approached with

caution.

6.1 Limitations

6.1.1 Data

This paper’s implementation of Markov matrices to model intergenerational mobil-

ity is primarily limited by the underlying dataset. The transition matrix calibration

would have benefited from a larger number of parent-child data points within each

birth year to more accurately discern rates of mobility. Note that the current PSID

dataset averages around 400 parent-child associations per birth cohort, where “as-

sociations” refer to incomes recorded at the age of 26 for both generations. These

limited data points increase the yearly noise in our analysis and reduce the validity of

potential takeaways. However, expanding the dataset proves to be formidable due to

the PSID’s methodology, which depends on annual interviews with a consistent pool

of families.

A transition to a more expansive digitized dataset could significantly bolster the

findings presented in this paper. The Statistics of Income (SOI) Data Master Files,

maintained by the Internal Revenue Service (IRS), cover the entire population and

contain variables that facilitate the creation of family units. Additionally, every

individual’s record in this dataset is tagged with a unique Taxpayer Identification

Number (TIN), which streamlines the process of tracking children throughout the

dataset. The availability of unique TIN numbers is a key advantage of the SOI

datasets over other large datasets like IPUMS-CPS, where longitudinal analysis is
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impossible. However, the SOI dataset is only accessible to select researchers through

solicited research projects awarded to winning applicants (Chetty et al. (2014) utilizes

the SOI dataset). Thus, we reiterate that while the SOI dataset can o↵er more

precise estimators than the manually curated PSID data, the PSID remains the most

comprehensive and publicly available dataset for studying intergenerational mobility.

Moreover the analysis conducted in this paper is constrained by the limited breadth

of available data, with the earliest data in the PSID corresponding to 1968. Thus,

there are only 29 transition matrices total, encompassing the period between the

1968 to 1997 birth cohorts. This timeframe encompasses a single generational shift,

as distinct human generational cohorts (e.g., baby boomers, Generation X) are typ-

ically demarcated in 25-year increments. These data limitations diminish the utility

of the delta matrix, as it can only compare di↵erences in intergenerational mobility

across an abbreviated window. Ideally, this study would incorporate data from the

beginning of the 20th century to examine how rates of mobility have evolved over a

century.

6.1.2 Model Construction

The other significant limitation in this paper relates to the Markov transition matrix

formulation. Specifically, the state space defined by segmenting the income distri-

bution into five discrete income subgroups introduces bias. By categorizing income

into lower and higher subgroups, the model implicitly biases transition probabilities,

as the lowest income group is predisposed to experiencing a higher likelihood of up-

ward mobility, and the highest income group is predisposed to a higher likelihood of

downward mobility.

Furthermore, it is crucial to provide a broad caveat regarding the use of Markov

processes in this paper and the corresponding mathematical properties, such as the

stationary distribution and mixing time. The transition matrices calibrated in this
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model are calibrated over two time periods (parent and child generations), represent-

ing only one iteration of the transition matrix. This approach is atypical for Markov

chain processes, as they are usually trained on a much wider set of observable time

states. Consequently, although a stationary distribution can be calculated for every

calibrated transition matrix per birth cohort, the stationary distribution is quali-

tatively infeasible to achieve, as the transition matrix corresponding to subsequent

generational leaps is di↵erent to reflect changes in mobility. Thus, this limitation re-

duces the utility of the mixing times as well, as they are contingent on the stationary

distribution.

6.2 Future Directions

6.2.1 Robustness

This paper makes key assumptions regarding the definition of the state space for

relative and absolute mobility, as well as the age at which income is tracked for

parents and children. These assumptions can be sensitized to test the robustness of

the results.

State Space

The relative mobility state space is currently defined by income quintiles. In future

work, this state space can be altered to include more granular states. For instance,

instead of quintiles, 10% increments could be established. Alternatively, the income

subgrouping could be set such that the variance within each subgroup is the same,

better reflecting the right-skewed nature of the income distribution.

The absolute mobility state space is defined by fixed income buckets pegged to the

1968 income quintiles. This assumption, with income in future years deflated to 1968

levels for comparison, can be sensitized in several ways. The income cuto↵s could
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be parameterized to consider a wider set of options, such as basing them o↵ fixed

variance levels in the 1968 income distribution or choosing a di↵erent reference year

for bucketing and adjusting accordingly. Furthermore, as discussed in the absolute

mobility analysis, the income distribution has changed over time, with income above

the mean becoming more spread out. This structurally increases the rate at which

upward mobility is achieved in the absolute parameterization. To account for these

changes, a better purchasing power adjustment deflation could be considered besides

just the Consumer Price Index (CPI) data. For example, income could be adjusted

using the Producer Price Index (PPI), Gross Domestic Product (GDP), Employment

Cost Index (ECI), or a weighted combination of these adjustments. In aggregate,

sensitizing the results will likely reduce skews toward upward mobility and bring

greater robustness to the absolute mobility analysis. This may allow for broader

qualitative takeaways.

Lastly, instead of subgrouping based on income, in theory, future researchers could

segment the population on other sociodemographic data like career or educational

attainment to model intergenerational mobility.

Income Tracking Age

Another vector for sensitivity is the age at which parent and child income is tracked.

This paper arbitrarily chooses the age of 26 as a way to extend the available time

series. Sensitizing for this is important given changes in lifecycle earnings due to

broader shifts in career and education paths discussed earlier. A simple robustness

check could involve changing the income age to 30 or 35 and observing how the

results change. In future studies, a more precise approach would be to formulate a

metric that tracks the adjusted lifecycle age of earnings for each birth cohort and take

income data for children at the corresponding adjusted age. Furthermore, to reduce

year-over-year noise in observed data, particularly in the absolute mobility case, an
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average three or five-year window of income could be used instead of an individual

data point.

Parent Income Subgrouping

Another assumption that can be addressed is using the lower parent income for rel-

ative and absolute mobility calculations, rather than the higher income parent. This

assumption regarding dual-income families mainly a↵ects later birth cohorts. While

its impact likely applies consistently across income subgroups, dual-income house-

holds may be disproportionately present in certain subgroups, potentially impacting

transition probabilities.

6.2.2 Model Construction

Future research can refine and adjust the Markov formulation presented in this study

by incorporating additional income data spanning multiple generations. As income

data encompassing future generations becomes available, it will be possible to extend

the Markov formulation to consider an additional time period. In this case, the model

would encompass two generational shifts, representing the transitions from parent

to child and from child to grandchild. Within this extended modeling framework,

the delta matrix analysis employed in the present study can be revisited to analyze

di↵erences in transition probabilities within the same familial lineage, allowing for a

comparison of how transition probabilities di↵er between the parent-child and child-

grandchild transitions.

Furthermore, the Markov formulation can be adapted more broadly by future

researchers, particularly in the context of absolute mobility analyses. For instance,

given information spanning at least three generations, future studies on absolute

mobility could construct Markov transition matrices that reflect the likelihood of

a child earning a certain percentage more than their parents, conditional on their
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parents having earned a certain percentage more than the child’s grandparents. This

extension would provide insights into upward mobility persistence across generations.

6.2.3 Event Studies

Further research can delve deeper into the qualitative underpinnings of the transition

matrix results, given the prevalent role of intergenerational mobility in policy and

individual decision-making. Potential event studies can create delta matrices that

specifically compare two periods with di↵erent underlying tax regimes, geopolitical

landscapes, or political leadership. For instance, a comparative analysis of transition

matrices could show di↵erences in intergenerational mobility between individuals eligi-

ble for the Vietnam War draft and those who were not. Note that observed di↵erences

between events are likely to be presented as stylized facts, as econometrically link-

ing world events to di↵erences in observed transition probabilities involves numerous

confounding factors.

6.3 Implications

The work conducted in this paper has significant implications for stakeholders inter-

ested in understanding intergenerational mobility patterns and their evolution across

generations. Specifically, the parameterization of mobility in terms of Markov transi-

tion matrices o↵ers researchers a framework for analyzing rates of mobility over time,

as well as the long-term implied stationary distribution of current mobility dynamics.

While publicly available datasets are limited in terms of historical data, the re-

sults of this paper can complement existing literature on intergenerational mobility

and inform policymakers on recurring poverty cycles and rates of upward mobility.

Furthermore, the more nuanced understanding of mobility presented in this study

can provide future researchers with an avenue to explore how other factors, such as
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family background and education, are linked with children’s economic outcomes.

Overall, research on intergenerational mobility plays a crucial role in public dis-

course, and the findings from this study, in conjunction with existing and future

studies, can a�rm or challenge narratives regarding the “American Dream”.
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