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Abstract

Quarterly earnings announcements release a substantial amount of financial infor-

mation about a firm all at once, often inducing significant, discontinuous jumps in

stock prices. Traditional option pricing models, such as the Black-Scholes model and

stochastic volatility models, fail to model these jumps. In this thesis, we aim to es-

timate the earnings volatility as priced into existing options contracts. To do so, we

use a modified Black-Scholes model and a modified Heston model that incorporates

jumps at earnings. Since both Black-Scholes and Heston have differing underlying

models for the stock price, we obtain two distinct estimates for earnings volatility.

These estimates are observed to be similar, although the estimate derived from the

Heston model is marginally higher. We then attempt to explain the estimates of the

earnings volatility using its lags, market volatility, and quarter information, among

other features. We observe that the previous two earnings volatilities are most predic-

tive of future earnings volatility. We then build more sophisticated prediction-focused

models and observe that a LASSO model exhibits the best out-of-sample error. These

predictive models allow us to construct four distinct trading strategies based on the

predicted earnings volatility, which are evaluated against several benchmarks and

prove to be profitable in a back-test. This work shows that simple heuristic-based

trading strategies can exploit discrepancies in the valuation of volatility in options

contracts around earnings announcements.
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Chapter 1

Introduction

1.1 Problem Motivation

Every quarter, firms are required by the Securities and Exchange Commission to

report their “earnings”. Earnings refer to the quarterly financial reports issued by

publicly traded companies, which provide insights into the companies’ profitability.

These reports generally include three fundamental financial statements: the income

statement, the balance sheet, and the cash flow statement, each providing informa-

tion about the aspects of the company’s financial health. Additionally, many firms

frequently provide forward estimates, or “company guidance”, which are the compa-

nies’ public forecasts of their performance in the current quarter or upcoming year.

As companies tend to release a substantial amount of information at once through

these announcements, this often leads to volatility in the stock prices, sometimes

even leading to “gapping” — jumps in the stock price — as investors rapidly absorb

previously undisclosed information about the company.

In financial markets, options are among the most frequently traded derivatives.

These financial derivatives give buyers, referred to as “the long party”, the right, but

not the obligation, to buy or sell an underlying asset at a predetermined strike price
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K and by a specific date T . One of the longest-standing problems in the field of

financial mathematics has been the problem of accurately pricing these derivatives.

The first of these attempts was pioneered by Fischer Black and Myron Scholes

with the introduction of their coveted Black-Scholes model [4]. The celebrated Black-

Scholes model for pricing European options assumes that the price dynamics of the

underlying asset follow a geometric Brownian motion with constant volatility σ, sig-

nifying that the volatility of the stock’s return is constant. This simplification allows

us to solve for a closed-form solution to the option pricing problem. Nevertheless, a

consensus among experts suggests that this constant volatility assumption does not

hold empirically when observing market prices. More precisely, empirical evidence

has shown that the volatility of an asset is itself randomly distributed [10], often

also following another geometric Brownian model that is correlated to the Brownian

motion that drives the stock price. These models are commonly characterized as

stochastic volatility models.

Bridging these two concepts, we can see the interconnectedness of earnings and

options pricing through the lens of volatility. Typically, the volatility of an asset

increases around the time of earnings announcements, as after earnings, the asset

price tends to jump as investors rapidly incorporate new fundamental information

about a company. Therefore, we need an options model that can account for these

jumps in stock price and explain the increase in volatility around earnings, providing

a more accurate description of the price dynamics.

The concept of implied volatility will be extensively discussed in this thesis. Unlike

realized volatility, which is calculated from the historical price fluctuations of the

underlying asset, implied volatility is derived from the market price of the option

itself. When trading options, all elements of an option — such as its market price,

the price of the underlying asset, strike price, maturity, and the risk-free rate —

are typically known, except for the volatility. By “backing out” the volatility that
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explains the current market price of the option, we can define this value as the implied

volatility. Implied volatility is a key concept, particularly in the realm of options

trading, as it represents the market forecast of future realized volatility of the asset

over the life of the option [9]. Therefore, trading options, to a certain extent, can

be perceived as trading volatility, as each party has different predictions on what the

volatility of the underlying contract is, presupposing that all traders adhere to the

same theoretical option pricing model.

In this thesis, we aim to estimate the earnings volatility that is priced into existing

options contracts. We do so under the assumption of a modified constant volatility

model and a modified stochastic volatility model that incorporate jumps at earnings.

As the two mdoels posit different underlying dynamics for the stock price, we obtain

two distinct earnings volatility estimates, which we then compare. Following this,

we explore potential relationships between the priced-in earnings volatility and dif-

ferent fundamental features such as its past earnings volatility, dispersion of analyst

forecasts, and the size of a company to gain intuition on how such features could

potentially influence earnings volatility. Finally, using a predictive model, we aim to

forecast earnings volatility and investigate trading strategies that could leverage this

information.

1.2 Literature Review

1.2.1 Option Pricing

We examine various existing options and stock price models. Since the influential work

of Black and Scholes [4], a diverse array of models have emerged that aim to more

accurately model the dynamics of stock prices. Empirically, it has been observed that

stock returns frequently exhibit fat tails and are skewed to the left [13], a phenomenon

that is inconsistent with the assumptions of the Black-Scholes model. To rectify these
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discrepancies, two approaches have been proposed: stochastic volatility models and

jump processes.

Within stochastic volatility models, the most popular approach is the Heston

model [10], which extends the Black-Scholes model by having a stochastic variance

process that follows a Cox-Ingersoll-Ross (CIR) process. A CIR process, first used to

describe the evolution of interest rates, is characterized by mean reversion, meaning

that it models the process to move towards a long-term average over time. Heston

goes on further to provide a closed-form solution for the price of a call option under

this model. Further in-depth explanation of the Heston model is detailed in Chapter

2.

Under the category of models with jump processes, the most prominent model is

the Merton jump-diffusion model [14]. This model presupposes that the stock price

exhibits small, continuous fluctuations in addition to large, discontinuous jumps:

dSt

St

= (r − λk)dt+ σdWt + kdqt

Here, St is the price of the stock, r is the risk-free rate, σ is the volatility of the

asset, Wt is the Brownian motion, k is the magnitude of the jumps, qt is the Poisson

process, and λ is the rate. Merton assumes that k is also randomly distributed. The

diffusion component is represented by the familiar geometric Brownian motion that

is observed in the Black-Scholes model, denoting continuous price movements. The

model then also introduces a jump component, characterized by log-normal jumps of

size k, driven by a compound Poisson process qt with rate λ. These jumps signify

sudden discontinuous changes in the underlying asset price due to the arrival of new

information. Therefore, stock price dynamics can now follow non-continuous paths.

We see that if k = 0, then the Merton model simply reduces back to the familiar
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Black-Scholes model. If the distribution of k obeys:

ln(1 + k) ∼ N(γ, δ2)

where γ and δ2 are the average log jump size and the variance of the jump sizes,

respectively, then Merton shows a closed-form solution to the option pricing problem

under this model.

Kou further expands upon this in [12] where he offers a new model that also

explains the skew and tail in the returns distribution but also provides analytical

solutions to option pricing problem for path-dependent options, options that depend

not only on the final price of the underlying asset but also the path that it took to

reach that final price.

In this model, the asset price once again follows a geometric Brownian motion,

similar to other models, but is further augmented by a compound Poisson process

where the jump sizes follow a double exponential distribution. The model is expressed

as:

dSt

St

= rdt+ σdWt + d

(
qt∑
i=1

(Vi − 1)

)

where qt is a Poisson process with rate λ, similar to the Merton model, and {Vi} de-

notes a sequence of independent, identically distributed random variables such that

log(V ) follows an asymmetric double exponential distribution. Once again, Kou is

able to derive an analytical solution to the option pricing problem under this model.

Both Merton’s and Kou’s models feature randomly distributed jump times and mag-

nitudes. Kou interprets the jump component of the models as the response to outside

news that comes out at random times. Due to the double exponential distribution

of the jump, which is characterized by high peaks and heavy tails, both an overreac-

tion and underreaction to news can be modeled. However, this stands in contrast to

earnings announcements where the timing of potential jumps is predetermined.
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1.2.2 Pricing Earnings Announcements

Next, we look at different works in the field of earnings announcements. The pio-

neering study by Ball and Brown [2] is said to have reshaped how investors thought

about capital markets research and interpret accounting earnings.

Ball and Brown seek to explain the relationship between earnings and stock price

residuals. Earnings residuals are defined as the difference between the anticipated

and actual released earnings numbers, while stock price residuals are the difference

in stock price preceding and following the earnings announcement. Fundamentally,

their research aims to explain stock price movement with respect to the discrepancy in

earnings expectations. To do this, Ball and Brown estimate a simple linear model with

firm-specific coefficients. Their results confirm that accounting figures and earnings

are indeed factors that investors consider when trading voluntarily.

Similarly, Ball and Brown’s methodology select the most representative and infor-

mative accounting numbers: earnings per share (EPS) and net income. This thesis

adopts a similar approach and focuses on the projections of EPS and Sales as these

two metrics have emerged as the most important fundamental accounting values, ev-

idenced by the prevalence of multiples such as enterprise value-to-sales (EV/Sales)

and price-to-earnings (P/E) by both sell-side and buy-side analysts for fundamental

valuation of firms. Like Ball and Brown, we also explore both firm-specific models

and a pooled model, enabling us to compare how coefficients vary across firms.

Donelson in his paper [7] discusses the topic of earnings uncertainty and its ca-

pacity to predict earnings returns. The study introduces a firm-specific measure of

earnings uncertainty by matching firm i at time t with firms of comparable charac-

teristics in the preceding period t − 1. The variance of the earnings realizations of

matched firms during period t represents the earnings uncertainty. Donelson posits

that the higher the variance of earnings found in the past of matching firms, the

broader dispersion of earnings results that could be realized by firm i. The study
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then empirically evaluates these measures and determines how predictive they are of

future earnings. We take a similar approach to Donelson, where we employ a measure

of earnings volatility and assess its relationship to other fundamental values. Emulat-

ing the features considered by Donelson such as analyst dispersion and firm market

cap, this thesis includes similar features as well.

Patell and Wolfson find in [19] that the majority of price movement occurs minutes

after the release of the earnings announcement, which then makes it reasonable to

model this information as a discontinuous jump in the stock price. Further exploration

by Patell and Wolfson in [18] shows that option prices contain information about

earnings announcements. To do so, they describe the time series behavior of implied

volatility around earnings.

They assume the following model: The instantaneous variance remains at baseline

level γ, except during the announcement period which begins at time t0. Throughout

the disclosure interval of duration τ , the variance now increases to a level γ+δ. They

then find that the average variance up until expiration T is equal to the area under

the instantaneous variance curve from that point to expiration divided by the length

of time to expiration T − t. Therefore, at a time t which precedes the announcement

date, the average variance can be given by:

σ2(t) =
1

T − t
(γ(T − t) + τδ) = γ +

τδ

T − t
(1.1)

They then use this model to find the magnitude of the increase in earnings volatility

around earnings from empirical data.

Dubinsky and Johannes in [8] derive a very similar model and estimator to that of

the one described by Patell and Wolfson above. They describe methods for estimating

earnings volatility and uncertainty from option prices using a stock price model that

incorporates discontinuous jumps similar to the one found in the effect of macroeco-
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nomic news by Beber and Brandt in [3]. In their research, Dubinsky and Johannes

analyze how to quantify earnings uncertainty under these models and demonstrate

that a high earnings volatility is highly correlated with subsequent volatile earnings

returns. This thesis draws heavily upon the methods proposed by Dubinsky and

Johannes for estimating earnings volatility and uncertainty. A more comprehensive

exposition of their methodological approaches is provided in Chapters 2 and 3.

Most of the literature analyzing options pricing models deals with pricing index

options. Bakshi and Cao describe in [5] that the return distributions of individual

equity firms were more volatile, less skewed, and had fatter tails than the market

index. Bakshi and Cao then show in [1] that return jumps and volatility jumps are

critical for pricing options, with return jumps being empirically more relevant. In

alignment with these developments, this paper focuses predominantly on the analysis

of return jumps, and not volatility jumps.
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Chapter 2

Option Pricing Models

2.1 Stock Models

In this section, we formulate the options pricing problem. To do so, we first introduce

the Black-Scholes and Heston models and subsequently extend these models with dis-

continuous jumps at earnings announcements. Let (Ω,F ,Q) be a probability space,

F be the normal filtration, and Q be the risk-neutral measure. The risk-neutral

measure Q is defined such that the current share price is exactly equal to the dis-

counted expectation of the share price at time T under this measure, mathematically

represented as:

St = e−r(T−t)EQ[ST ]

From now on, we define St to be the price of the asset at time t, r to be the risk-free

rate, σ to be the volatility of the stock, and Wt be the Q-Brownian motion.

2.1.1 Black-Scholes Model

First, we model the stock price under the classic Black-Scholes model given in [4].

Under the Black-Scholes model, the underlying stock dynamics are modeled by the

9



following stochastic differential equation:

dSt = rSt dt+ σSt dWt (2.1)

The Black-Scholes model above assumes that both the risk-free rate r and the volatil-

ity σ are constant and non-negative. The simplifying assumption of volatility being

constant is a necessary assumption that allows for a closed-form derivation of the

price of a European option which we describe in Section 2.2.

2.1.2 Heston Model

In contrast to the Black-Scholes model where the volatility is treated as a constant, we

now allow for the evolution of the volatility of an asset. Primarily, the Heston Model

[10] assumes that the volatility of the asset is neither constant nor deterministic, but

instead follows a stochastic process, specifically the the Cox-Ingersoll-Ross process.

The basic Heston model is described by the following set of stochastic differential

equations:

dSt = rSt dt+
√
νtSt dW

(0)
t

dνt = κ(θ − νt) dt+ ξ
√
νt dW

(1)
t

(2.2)

The parameters κ, θ, ξ are additional parameters found in this model in addition to

the ones found also in the Black-Scholes model. The drift factor κ(θ − νt) in the

volatility equation ensures mean reversion of the variance back towards the long-term

value θ with a rate of reversion controlled by the strictly positive parameter κ. The

parameter ξ reflects the volatility of the volatility, representing the rate at which the

volatility itself varies.

To account for the leverage effect, the well-established negative relationship be-

tween returns and subsequent volatility, it is common to correlate the Wiener pro-
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cesses W
(0)
t ,W

(1)
t such that:

dW
(0)
t · dW (1)

t = ρ dt

When the returns on equity are negative, the reactions by investors are more volatile,

thereby increasing volatility, and vice versa. The parameter ρ represents the cor-

relation between the underlying asset price and its volatility. Furthermore, we also

assume the Feller condition holds where:

2κθ > η2

This is a sufficient condition for the volatility process νt to remain strictly positive.

Once again, we again assume that the risk-free rate is non-negative. These assump-

tions are ones that Heston also adopts in his paper [10].

2.1.3 Models with Discrete Earnings Jumps

The previously discussed models only account for continuous stock price dynamics

and do not account for the rapid changes typically associated with earnings announce-

ments. We model these rapid changes as discontinuous price jumps at earnings. Un-

like other models with discontinuous jumps such as the Merton jump-diffusion model

which assumes a random distribution of jumps driven by a Poisson process, the tim-

ings of earnings are pre-disclosed, and so the occurrence of jumps in this context

are predictably non-random. Thus, this paper will adopt an alternative model that

reflects this difference, utilizing the same approach taken by Dubinsky and Johannes

in [8].
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Let Nd
t count the number of predictable earnings announcements prior to time t:

Nd
t =

∑
j

1[τj≤t]

where the τj’s denote the sequence of predictable times that represent when the earn-

ings announcements occur. The magnitude of the jump is given by Zj = log(Sτj/Sτ−j
),

the log-return of the stock price right after the announcement relative to right before

it. Following Dubinsky, we assume that the sizes of these jumps Zj are indepen-

dent and follow a normal distribution Zj ∼ N
(
−1

2
σ2
j , σ

2
j

)
where σj is the anticipated

volatility surrounding the earnings announcement. We choose the mean of Zj such

that E[Sτj/Sτ−j
] = 1. This ensures that on average after a jump occurs, there is no

systematic increase or decrease in the stock price and reflects the idea that while

jumps introduce additional volatility into the stock price process, they do not nec-

essarily have a predictable direction. We then extend the dynamics of the original

Black-Scholes model from Equation 2.1 as follows:

dSt = rSt dt+ σSt dWt + d

 Nd
t∑

j=1

Sτ−j
[eZj − 1]

 (2.3)

where now we have discontinuous jumps at the earnings announcements. Similarly,

we do the same with the Heston model, which gives us the dynamics:

dSt = rSt dt+
√
νtSt dW

(0)
t + d

 Nd
t∑

j=1

Sτ−j
[eZj − 1]


dνt = κ(θ − νt) dt+ ξ

√
νt dW

(1)
t

(2.4)

The above assumptions for each model still hold for these models as well. The antic-

ipated volatility of the jump size Zj captures the earnings volatility and the funda-

mental uncertainty priced in by investors.

In the Heston model with jumps, we assume that there is a jump at earnings
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which leads to a discontinuous stock path. We could also extend the Heston model

by incorporating discontinuous jumps in volatility as well at this time. However,

due to complexity and lack of estimability from ATM options, and Bakshi and Cao

showing in [1] that the effect of price jumps was more empirically relevant than

volatility jumps, we choose to simply focus on the price jumps in this paper.

2.2 Option Pricing

Let ϕ(s) denote the payoff function of a derivative that only depends on the stock

price at maturity i.e. not a path-dependent derivative. We will first concern ourselves

with European calls with the payoff ϕ(ST ) = (ST −K)+ where K is the strike price

of the option.

Using the fundamental theorem of asset pricing, the price of the European call

option under the Black-Scholes model is:

vBS(t, s) = e−r(T−t)E{ϕ(ST )|St = s}

and under the Heston model will be:

vH(t, s, v) = e−r(T−t)E{ϕ(ST )|St = s, νt = v}

Under the Black-Scholes model without jumps from Equation 2.1, we can explicitly

solve for vBS(t, s) as shown in [4], which gives us:

vBS(t, s) = sN(d1)−Ke−r(T−t)N(d2) (2.5)

where

d1 =
ln(s/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t
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and N(·) is the CDF of the standard normal distribution.

In addition to deriving a closed-form solution to the option-pricing problem as

we did with Equation 2.5, options can also be priced numerically via Monte-Carlo

simulation, as described in [6]. This process involves simulating a possible path for

the stock price over the life of the option, from time t to time T , and then calculating

the option’s payoff for that path, denoted as ϕ(ST )1. This procedure is then repeated

until we record n possible payoffs. The average ¯ϕ(ST ) =
1
n

∑n
i=1 ϕ(ST )i → E[ϕ(ST )] as

n → ∞ by the Law of Large Numbers. The resulting average can then be discounted

to estimate the option price. This method is particularly useful for models where it

is difficult to find closed-form solutions, such as with the Heston model incorporating

jumps as per Equation 2.4.

To simulate stock price paths under the Heston model with jumps, we employ the

Euler Scheme as detailed in [15]. We break up the life of the option from time t to

time T into M equally spaced time steps where ∆t = (T − t)/M . The stock and

volatility paths are simulated using the following equations:

vn+1 =

(
vn + κ(θ − vn)∆t+ ξZv

√
vn∆t

)+

ln(Sn+1) = ln(Sn) +

(
r − 1

2
vn

)
∆t+ Zs

√
vn∆t+

Nd
t∑

j=1

Zj

(2.6)

Here, Zs, Zv are the standard normal random variables, with Zs having a correlation

ρ to Zv. This pair of correlated standard normal random variables can be generated

by Zv = Z1 and Zs = ρZv +
√

1− ρ2Z2 where Z1 and Z2 are two independent draws

from the standard normal distribution. Zj, which represents the earnings jump, is

generated from a normal distribution with a mean−1
2
σ2
j and a variance σ2

j as described

above. Exponentiating this log-stock price yields the simulated stock price process.

The above formulas and payoffs are valid only for European options. However,
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most of the equity options traded in the US market are American options. American

options differ from European options in that American options can be exercised at

any time before and including the day of expiration, while European options can only

be exercised on the day of expiration. We show that in the case of no- or low-dividend

stocks, the price of the American call option and the European call option should be

the same.

To do so, we start by showing that it is never optimal to exercise an American

option early. We observe that the payoff function ϕ(s) = (s−K)+ is a convex function.

We also know that under the risk-neutral measure Q, from the fundamental theorem

of asset pricing, we have that EQ[ST |S0 = s] = erT s. Therefore, by Jensen’s inequality:

EQ[ϕ(ST )] = EQ[(ST −K)+|S0 = s]

≥ ϕ(EQ[ST |S0 = s])

= (erT s−K)+

Therefore, we see that:

v(t, s) = e−rTE{ϕ(ST )|S0 = s}] ≥ (s−Ke−rT )+ > (s−K)+

From here, we can conclude with any maturity T , the stopping value of (s − K)+

will always be strictly less than the corresponding value of the European call option.

Therefore, it is shown that it is never optimal to exercise early, and therefore, the

price of the American call option and the European call option should be the same.

For this reason, even though our estimators of earnings volatility in Chapter 3 assume

the prices of European call options, even if we use prices of American call options of

no- or low-dividend stocks, our estimations should remain relatively robust.

Throughout this thesis, the concept of option moneyness will be referenced, de-

scribing the relationship between the strike price of an option and the current spot
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price of the underlying asset.

• In-The-Money (ITM): A call option is in-the-money when the strike price is

below the spot price of the underlying asset, indicating profitability if exercised

immediately.

• At-The-Money (ATM): An option is at-the-money when its strike price is equal

to or close to the spot price of the underlying asset.

• Out-of-the-Money (OTM): A call option is out-of-the-money when the strike

price is above the spot price of the underlying asset, rendering it valueless if

exercised at that time.
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Chapter 3

Overview of Models

3.1 Overview of Earnings Estimator

3.1.1 Black-Scholes Estimator

In this section, we develop an earnings estimator analogous to the one presented in

Dubinsky and Johannes’ paper [8]. Let us first consider the Black-Scholes model

with discrete earnings jumps from Equation 2.3. In this model, σ is the diffusive

volatility, indicative of the level of volatility without jumps, and is assumed to be a

constant. By applying Ito’s formula for semi-martingales with jumps to the function

f(t, St) = ln(St) as seen in [20], and integrating from 0 to T , we obtain:

ln(ST )− ln(S0) =

(
µ− 1

2
σ2

)
T + σWT +

∫ T

0

ln(Sτ )− ln(Sτ−)dN
d
T

We know that:

ln(Sτ )− ln(Sτ−) = ln

(
Sτ

Sτ−

)
= Zj
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where the second equality comes from the definition of Zj. Plugging in and rewriting

the integral as a summation as seen in [20], we get:

ln(ST )− ln(S0) =

(
µ− 1

2
σ2

)
T + σWT +

Nd
T∑

j=1

Zj

which we can simplify as:

ST = S0 exp

(r − 1

2
σ2

)
T + σWT +

Nd
T∑

j=1

Zj

 (3.1)

We can further simplify this equation as follows. Since we assumed Zj ∼ N
(
−1

2
σ2
j , σ

2
j

)
,

we know that the sum of Zj is also normally distributed:

Nd
T∑

j=1

Zj ∼ N

−1

2

Nd
T∑

j=1

σ2
j ,

Nd
T∑

j=1

σ2
j


and therefore, we have that:

σWT +

Nd
T∑

j=1

Zj ∼ −1

2

Nd
T∑

j=1

σ2
j +WT

√√√√√
σ2 + T−1

Nd
T∑

j=1

σ2
j


Substituting this into Equation 3.1 above and rewriting, we get:

ST = S0 exp


r − 1

2

(
σ2 + T−1

Nd
T∑

j=1

σ2
j

)T +WT

√√√√√(σ2 + T−1

Nd
T∑

j=1

σ2
j

)
We can see that this results in the Black-Scholes model with a modified volatility

input. Instead of the constant volatility σ as we had in Equation 2.1, we now have:

σ2
t,T = σ2 + T−1

Nd
T∑

j=1

σ2
j (3.2)
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where t is the current time t, T is the days until expiration of the contract, and Nd
T

is the number of earnings announcements between t and T . This then implies that

the price of a European call option is given by the Black-Scholes formula given in

Equation 2.5 with the above-modified volatility substitution.

This analysis allows us to draw the following important conclusions. In the ab-

sence of any earnings announcements, i.e., Nd
T = 0, we have that the above formula,

Equation 3.2, simplifies back to the diffusive volatility σ2. Consequently, the price

of the option reverts to the Black-Scholes price formula without any jumps from

Equation 2.5. This aligns with our intuition as without any earnings jumps ahead of

us, we should simply price the option normally under the Black-Scholes model. We

also observe that the volatility around earnings should climb as the announcement

date approaches, peaking right before the earnings release. Subsequently, after the

announcement, the volatility should then decrease back to σ2.

The volatility model in Equation 3.2 yields results that are similar to the volatility

model assumed by Patell and Watson in Equation 1.1 [18]. However, as described

by Dubinsky, despite the similar implications regarding volatility around earnings

announcements, there are subtle theoretical differences. Patell andWatson’s approach

models stock price paths as continuous with a state of elevated volatility around

earnings. However, in the model above, there is a discontinuous jump in the stock

price path, and it is from this discontinuity where the volatility of earnings is derived

from. A notable advantage of this framework is its flexibility, allowing for a more

natural integration of stochastic volatility as seen in Equation 2.4. This adaptability

enhances our capacity to capture the dynamic nature of volatility.

Building on this framework, we can naturally derive two distinct estimators of

σ2
j , the earnings volatility of the jth earnings event, using the methodology outlined

by Dubinsky in his paper [8]. Consider a scenario where we have two options with

T1 and T2 days until maturity from the time t such that T2 > T1. This means that
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the second option has a longer time until maturity compared to the first option. Say

that we have a single earnings announcement, the jth earnings event, scheduled to

occur before the maturity of either option, such that Nd
T1

= 1 and Nd
T2

= 1, as seen

in Figure 3.1 below:

Figure 3.1: Diagram of Option Maturities for Term-Structure Estimator

Under these assumptions, using the volatility model from Equation 3.2, we have

the following two equations:

σ2
t,T1

= σ2 + T−1
1 σ2

j

σ2
t,T2

= σ2 + T−1
2 σ2

j

Solving this system of equations for σ2
j , we get:

σ2
j =

σ2
t,T1

− σ2
t,T2

T−1
1 − T−1

2

(3.3)

This is our first estimator, which Dubinsky aptly labels as the term-structure estima-

tor.

For the second estimator, consider the scenario where we have an option with T

days until maturity, with an earnings announcement scheduled to occur after the close

of trading on time t. At this point in time, the number of earnings announcements

before the option’s maturity is Nd
T = 1. However, after the earnings announcement

has taken place, on time t + 1, this count changes to Nd
T = 0. This can be seen in

Figure 3.2:
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Figure 3.2: Diagram of Option Maturities for Time-Structure Estimator

As described above, the volatility of an option in the absence of any future earnings

announcements defaults back to σ2. Once again using the volatility model from

Equation 3.2, we can construct the following two equations:

σ2
t,T = σ2 + T−1σ2

j

σ2
t+1,T−1 = σ2

Solving this system of equations for σ2
j , we get:

σ2
j = T (σ2

t,T − σ2
t+1,T−1)

Dubinsky aptly names this estimator as the time-series estimator.

Empirically, to solve for σ2
j , we rely on the implied volatilities derived from the

market prices of the options we chose. This approach enables us to estimate the earn-

ings volatility that is currently implied by the market, providing a direct method to

gauge investor expectations regarding the upcoming earnings announcement. In our

research, we encountered significant empirical difficulty in utilizing the second time-

series estimator for earnings estimation, with the majority of our attempts yielding

non-meaningful values. This aligns with what Dubinsky finds as well. One possible

explanation for this difficulty is the time-series estimator’s dependence on the implied

volatility of the option after earnings, which may introduce a degree of fragility to the

estimation process. Also, as Dubinsky mentions, the time-series estimator relies solely
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on data from a single option, whereas the term-structure estimator leverages data from

two distinct options. This contributes to the robustness of the term-structure esti-

mator, making it a more reliable tool for assessing earnings volatility. Consequently,

for the estimation of σ2
j moving forward, we use the term-structure estimator over

the time-series estimator. Throughout this paper, the terms “term-structure estima-

tor” and “Black-Scholes Estimator” are used interchangeably, as a reference to the

derivation of the term-structure estimator from the original Black-Scholes model with

jumps.

The accuracy of the estimators above is predicated on the assumption that the

diffusive volatility of an asset is constant. Consequently, if this assumption proves

invalid — as most empirical observations of volatility have indicated — our estima-

tors may fail to offer significant insights. However, Dubinsky in the same paper [8]

demonstrates that not only is the the implied variance derived under the Black-Scholes

model a good proxy for the risk-neutral variance, but that the term-structure estima-

tor retains its robustness even when applied to stochastic, mean-reverting volatility

processes. As a result, in our empirical testing of these estimators, we anticipate that

the term-structure estimator will not exhibit substantial biases.

3.1.2 Stochastic Volatility Estimator

So far, the results of the estimator found in this paper are under the assumption that

the diffusive volatility σ is constant. We now consider the stochastic volatility model

from Equation 2.4. Once again, we employ a method that is employed by Dubinsky

in his paper [8] and estimate the parameters in the Heston model using the entire

time series of at-the-money (ATM) call options.

Let C(St, νt,Θ, στn , τn, Kn) represent the theoretical price of the call option gen-

erated from the Heston model with jumps at earnings with a strike Kn and τn days

until maturity. The set of parameters for the stochastic volatility process is denoted
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by Θ = (κ, θ, ξ, ρ). Let στn represent the set of σj’s that occur from current time t and

until the option’s expiration, defined as στn = {σj : t < j < t+τn}. Let Cact(t, τn, Kn)

be the market price of the option at time t with a strike Kn, and τn days until matu-

rity. To estimate the parameters, we maximize the following log-likelihood objective

function:

log[L(Θ, στn , νt)] =

−TN

2
log(σ2

ε)−
1

2

T∑
t=1

N∑
n=1

[
Cact(t, τn, Kn)− C(St, νt,Θ, στn , τn, Kn)

σεSt

]2 (3.4)

The term σ2
ε is introduced to denote the variance of the pricing errors, with the

assumption that it remains constant across all options. Thus we assume that the

actual market price Cact(t, τn, Kn) is normally distributed around the theoretical price

C(St, νt,Θ, στn , τn, Kn) with a variance σ2
ε .

The objective function is designed with a twofold purpose. The first term of

the objective function penalizes higher values of σ2
ε which pushes our optimization

towards solutions that minimize the variance of pricing errors. The second term

aims to minimize the differences between market prices and those predicted by the

theoretical model, with these differences normalized by the stock price St over time T

and across N different options. As Dubinsky highlights in [8], this error normalization

ensures the stationarity of the data.

For our analysis, we implement the Heston model with jumps through a Monte

Carlo simulation as described in Equations 2.6, which was then used to estimate the

theoretical option price C(St, νt,Θ, στn , τn, Kn) utilized in our optimization process.

In contrast to the previously discussed Black-Scholes earnings estimator, this method

does not provide a time series of earnings volatilities across different quarters and

instead only offers a singular aggregate estimate of σj that fits across all the earnings

announcements. We plan to compare these estimates against the average earnings
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estimates we obtain from the simpler Black-Scholes estimator.

3.2 Decomposition of Earnings

Having developed a methodology for estimating earnings volatility and uncertainty,

our next objective is to identify the underlying drivers behind these values. We aim

to decompose the earnings volatility into various features and gain insight into how

fundamental values may influence these values. This approach seeks to build intuition

and give us an interpretable breakdown of what drives earnings volatility, laying a

solid foundation for accurately forecasting this volatility in the upcoming section.

For this thesis, we select a set of features to investigate their impact on earn-

ings volatility: the analyst variance (AN), the logarithm of market capitalization

(logMkt), the firm age (Years), the specific quarter of the earnings announcement

(Q), the market implied volatility (VIX), and previous earnings variance (σ2
j−k). The

features are denoted in the model by the notations provided in parentheses. Factors

such as firm age and market cap already serve as traditional indicators for funda-

mental uncertainty within firms, owing to their clear relationship with the firm’s

operational stability. Also, their ease of observability further justifies their inclusion

as factors in our analysis.

The perspectives of buy-side analysts, comprised of institutional investors and

asset managers, often carry more weight than those of the sell-side brokers and ana-

lysts, given the buy-side’s direct influence on investment decisions and market move-

ments. However, the proprietary nature of buy-side information and the discretion

practiced by the investors render access to their insights relatively challenging. As

a workaround, we use sell-side analysts’ reports on securities, which offer forecasts

on various financial metrics such as EPS and revenue, as a proxy for buy-side opin-

ions. A larger dispersion in these forecasts among analysts may indicate heightened
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uncertainty and volatility surrounding earnings.

Additionally, we utilize the VIX as a proxy for systematic variance found within

the market. The VIX measures the 1-month implied volatility derived from S&P500

options and reflects the expected market volatility in the coming month. By in-

corporating the VIX, we aim to encompass broader market uncertainties that could

influence earnings volatility.

Finally, by considering earnings volatility as part of a time series, we capture

the idiosyncratic uncertainties found within a firm. Further explanation of how we

systematically defined and derived these values is elaborated in Chapter 4.

In the subsequent sections, N denotes the number of data points, while D de-

notes the number of factors, excluding the terms related to lagged earnings volatility.

In all of the proposed models, the response variable Y will be σ2
j , the variance sur-

rounding the upcoming earnings calculated using the Black-Scholes estimator. We

set aside the estimate derived from the stochastic volatility model due to it only

providing a singular average estimate of earnings volatility. This is in contrast with

the Black-Scholes estimator which outputs a distinct value for each quarter. The

input variable x, comprised of a vector of the identified features above, is expressed

as x = (x1, . . . , xD).

3.2.1 Multiple Linear Model

To decompose earnings, we start with a multiple linear model. The rationale behind

this approach lies in the interpretive clarity and more straightforward framework

linear models provide in understanding the relationships between volatility and the

influencing features through their coefficients.

The linear model is structured as follows:

Ŷt = β0 + β1Yt−1 + β2Yt−2 + . . .+ βpYt−p + βT
p+1x
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where β0, . . . , βp ∈ R and βp+1 ∈ RD. The model presumes that the predicted variable

Y , in this context σ2
j , can be represented as a linear combination of up to p lagged

values of Y , in conjunction with the feature data x. The optimal number of lagged

values, p, is determined by cross-validation. The model will be fit using the method

of least squares, formulated as:

β̂ = argmin
β

N∑
i=1

(
Yi − Ŷi

)2

3.3 Predicting Earnings

We now transition to more complex, predictive models, including the LASSO method

and random forest model. While these models may not offer the same level of inter-

pretability as linear models, they hold the potential to yield more accurate predictions

of earnings volatility. Achieving higher accuracy in our predictions enables us to de-

velop trading strategies where the precision of forecasts is imperative, even at the

cost of sacrificing some interpretability.

In contrast to the previous section, where our focus was on building intuition on

the features influencing earnings volatility without concern for overfitting, we now di-

vide our dataset into a training and back-testing set. The latter set serves to evaluate

the efficacy of our trading strategies in Chapter 6. Given the chronological nature

of our data, when splitting our data into the above sets, it is important we maintain

the sequential order of the dataset and prevent the inclusion of future information

when predicting, avoiding lookahead bias during the training process. Rather than

employing the common approach of randomly selecting data points for each set, we

organize the data into a 60-40 split, allocating the initial 60% of the data to training

and reserving 40% for back-testing.

To assess the models and evaluate performance, we employ an out-of-sample test-
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ing approach. To estimate out-of-sample mean squared error (MSE) and R2, we divide

the training set into n sequential partitions. In each iteration, we incrementally ex-

pand the training set by one partition and test on the next, continuing this process

until all partitions are utilized. Averaging the scores obtained from each iteration

gives us our out-of-sample error scores for both MSE and R2. These methods ensure

the integrity of the temporal order of the data set. We choose our parameters for

cross-validation during this step as well.

3.3.1 LASSO Method

The LASSO (Least Absolute Shrinkage and Selection Operator) method is a shrinkage

method for the linear model described above. Instead of solely minimizing the squared

errors as in the linear model before, a L1 lasso penalty is also imposed. Thus, the

optimization problem is formulated as:

β̂ = argmin
β

N∑
i=1

(
Yi − Ŷi

)2
+ λ

∑
|βj|

Adjusting the regularization parameter λ can lead to the reduction of certain coeffi-

cients of the predictors to zero, thereby doing a level of continuous subset selection

of the features. While the penalty term adds some level of bias to our coefficient

estimates, it can also reduce the variance, potentially improving the model’s general-

izability and preventing overfitting. We select our regularization parameter λ using

cross-validation.

3.3.2 Random Forests

Next, we develop the random forest model. The random forest model is an ensemble

learning method that amalgamates a multitude of decision trees to perform regression

or classification tasks.
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A decision tree is a hierarchically organized structure that segments the data space

into different regions based on the predictor values. At each node, a decision is made,

leading to the final value that is reached after every decision.

For our analysis, we utilize the traditional Classification and Regression Trees

(CART) methodology. The model can be expressed as follows:

Ŷ =
M∑
i=1

βm1(x ∈ Rm)

During the learning process, the model identifies the optimal splitting variables and

points, partitions the data into regions, determines whether a node should terminate

or undergo further subdivision, and prunes the branches as necessary.

The random forest model, by leveraging the strength of multiple decision trees,

aims to enhance prediction accuracy, overcoming the tendency to overfit common

with individual decision trees. Each time a split is considered on a tree, a random

sample of the features is chosen as candidates for consideration from the full set of D

factors, a process that decorrelates the trees with each other. After constructing B

trees, the predictor is formulated as:

Ŷ =
1

B

B∑
b=1

Ŷ (x; Θb)

where Θb characterizes the bth tree in terms of the split, thresholds, and terminal

nodes. The hyperparameters for the random tree forest such as the maximum depth,

number of trees, and minimum number of leaves will be chosen using a randomized

grid search cross-validation.

28



Chapter 4

Data Acquisition

4.1 Sourcing

The data for this section can be split into two categories: fundamental data and

options data. We obtain closing options and stock prices from Ivy DB Option-

Metrics [17], a frequently used data source for equity options prices in options research

literature. We also obtain our fundamental values from the data source IBES [11].

The analysis utilized data covering the past decade, from February 28, 2013, to Febru-

ary 28, 2023.

4.2 Filtering Firms

To determine which firms to include in our analysis, we first identify the top firms

based on the highest average dollar notional volume traded over the previous 90 days,

representing the most liquid firms. We select the most liquid stocks to ensure adequate

price discovery of option and stock prices. From here, we remove firms with a median

dividend rate exceeding 1%, firms whose stock price traded below $5, firms involved in

significant mergers and acquisitions (M&A), and any American Depository Receipts

(ADR).
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Our choice of low-dividend stocks was mostly computational, as the estimators

described in the previous section assumed no dividend payments from the stocks,

and a high dividend rate could potentially skew the estimations. While we could

have amended our models to incorporate dividends, such adjustments would have

introduced complexity that could affect option pricing, particularly regarding the

early-exercise premiums in American options. As shown in Chapter 2, without div-

idends, the value of American and European call options should be the same. In

addition, as mentioned in [8], unlike index options which model dividend payments

continuously, dividends on individual equities are relatively lumpy and could further

affect our model. We exclude stocks that traded below $5 due to the restricted range

of available option strikes. This could lead us to analyze options that are either

very in-the-money or out-of-the-money, potentially leading to implied volatility levels

that are heavily skewed. Removing firms involved in major M&As and ADRs sim-

plified our calculations as the volatility of firms in this category tends to be rather

unpredictable.

From here, we choose the top 40 firms that fit these criteria. Empirically, upon

analyzing the tickers DELL and AMC, we observe that the estimators are highly

unstable. In DELL’s case, this instability could be attributed to its recent transition

back to public trading after a period of being private, a change that occurred within

the last five years. Consequently, there was a lack of earnings data for us to make

any meaningful conclusions. For AMC, the stock exhibited erratic trading behavior

during the 2020 surge in trading, driven predominantly by retail investors coordinat-

ing through online platforms. This unusual market activity has made valuation and

prediction models for AMC less reliable. To maintain the robustness of our model,

we decide to exclude the two tickers from our firms, reducing the number of firms

under consideration to 38. We list the selected firms in order in Table 4.1 and Table

4.2 at the end of the chapter. We observe that most of the selected companies are
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tech or semiconductor companies, which aligns with our selection criteria of mostly

high-growth, low-dividend stocks.

4.3 Data Cleaning and Processing

4.3.1 Processing Earnings Estimator

For the earnings data, we first collect the dates of every earnings announcement for

each firm and then label which quarter earnings they were.

We then collect the following data from the daily closing call options: Ticker

Symbol, Best Bid Option Price, Best Offer Option Price, Strike Price, Date Traded,

Expiration Date, and Closing Stock Price. The price of the option was determined

to be the midpoint between the best bid and offer price provided by OptionMetrics.

We calculate the implied volatilities of the options using this price. We decide to

focus only on at-the-money (ATM) call options due to their high liquidity and to

mitigate the effects of volatility skew that is found in deeply in-the-money or deeply

out-of-the-money options. To filter for ATM options, we find every option traded on

a given date and a given expiration date. We then select the option that had the

strike closest to the closing stock price on that day.

Figure 4.1: Implied Volatility of the Nearest Expiration ATM option for TSLA
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In Figure 4.1, we plot the implied volatility of the nearest expiration ATM option

for TSLA. As explained by our earnings estimator from Equation 3.2 in Chapter 3, we

observe a gradual increase in the volatility leading up to the earnings announcement,

hitting a peak right just before earnings are disclosed. This is then followed by a

rapid decline in volatility after earnings.

We analyze the options of all 38 firms traded two days and seven days prior to the

earnings announcement. Applying the estimator a few days before the actual earnings

date enables us to obtain more stable estimator values, which are not affected by

the increase in trading flow that usually precedes an announcement. This approach

allows our earnings estimator to “settle” to a more definitive value. We evaluate

the earnings estimator values at two distinct intervals for the following reason: The

value determined 2 days before the earnings is a more immediate estimator value,

which we believe reflects a more accurate representation of the market sentiment

on that earnings volatility. The value determined 7 days before the earnings serves

as a baseline, allowing us to track the evolution of market expectations and refine

our trading strategies by comparing the two measurements. More detail is described

in Chapter 6 when discussing the strategies. When computing the Black-Scholes

estimator, we sort the options by maturity and select the first two options closest to

maturity. Although the choice of these options was made arbitrarily, we experimented

with other combinations of options and verified that they resulted in similar values

of earnings volatility, confirming the robustness of our estimator.

With regards to the estimation under the stochastic volatility model, due to the

computational complexity of the maximum likelihood estimation (MLE) described in

Equation 3.4, we compute earnings estimates only for the following few firms: AAPL,

META, TSLA, AMZN, NFLX, MSFT, AMGN, and INTC. The first five firms were

chosen due to the fact that they were the most liquid stocks, and the last three were

chosen so that we could compare our results to that of the firms chosen by Dubinsky
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in his paper [8].

When estimating the theoretical price of the option, we utilize M = 252 time

steps to correspond with each trading day within a year and simulate N = 1000 stock

price paths. The number of stock price paths is kept relatively low as to expedite

the convergence of the optimization problem. To solve the optimization problem,

we utilize Differential Evolution, a type of genetic algorithm specifically designed

for optimizing real-valued multi-dimensional functions. The algorithm iteratively

improves a solution by maintaining a population of candidate solutions, creating new

solutions by combining existing ones, and keeping the solution that has the best

“fitness” as determined by the optimization problem. Differential Evolution operates

without the need for gradient information, making it particularly helpful in our case

where solving for the gradient may be difficult to compute.

4.3.2 Finding Features

All features are collected seven days before an earnings announcement, ensuring that

when we predict volatility for trading, we avoid the inclusion of any future data.

To calculate the log market cap, we first multiply the stock price on that day by

the total number of shares outstanding to find the total market cap. We then take

the logarithm of this value to compute this feature.

For the age of the firm, we calculate the number of years from the firm’s Initial

Public Offering (IPO) date to the current day. This approach provides a standardized

measure of firm age, which is useful given the absence of clear founding dates for many

of the firms under consideration.

To represent earnings quarters, we introduce three dummy variables to represent

the second, third, and fourth quarters, respectively. Each dummy variable is assigned

a value of 1 for observations falling within the corresponding quarter, isolating the

impact of each quarter relative to the first quarter.
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Additionally, we collect the closing VIX prices. To translate these values from a

volatility measure into a variance measure, the VIX values are divided by 100 and

squared, as a measure for market forecast variance.

For the dispersion of analyst forecasts, we first compile a list of forecasts made by

analysts between consecutive earnings releases, focusing on the most recent forecast

by each analyst within this period. The variance among these forecasts among the

analysts serves as a measure of analyst dispersion. For example, for TSLA, with an

earnings release scheduled for February 7, 2018, we examine the variance among the

forecasts made by analysts from the previous earnings announcement on November

1, 2017, until January 31, 2018. The variance among the forecasts then serves as the

measure of analyst dispersion for the February 7 earnings. To normalize the scale of

these forecasts, we utilize the coefficient of variation:

Coefficient of Variation =

√
Variance of Forecasts

Mean of Forecasts

This process is done for both EPS and revenue forecasts for the upcoming quar-

ter and year, yielding four distinct measures of analyst dispersion for each earnings

announcement.
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Firm Stock Ticker

Tesla, Inc. TSLA
Meta Platforms, Inc. META
Apple Inc. AAPL
Amazon.com, Inc. AMZN
Netflix, Inc. NFLX
Advanced Micro Devices, Inc. AMD
Zoom Video Communications, Inc. ZM
Moderna, Inc. MRNA
PayPal Holdings, Inc. PYPL
Alphabet Inc. GOOGL

Microsoft Corporation MSFT
NVIDIA Corporation NVDA
Enphase Energy, Inc. ENPH
DocuSign, Inc. DOCU
Coinbase Global, Inc. COIN
The Boeing Company BA
Booking Holdings Inc. BKNG
Adobe Inc. ADBE
SolarEdge Technologies, Inc. SEDG
Oracle Corporation ORCL

Table 4.1: List of Firms with Corresponding Stock Tickers (1-20).

35



Firm Stock Ticker

Super Micro Computer, Inc. SMCI
Palantir Technologies Inc. PLTR
Walmart Inc. WMT
Snowflake Inc. SNOW
Etsy, Inc. ETSY
Upstart Holdings, Inc. UPST
Palo Alto Networks, Inc. PANW
C3.ai, Inc. AI
Salesforce, Inc. CRM
Qualcomm Inc. QCOM

Applied Materials, Inc. AMAT
Amgen Inc. AMGN
Cisco Systems, Inc. CSCO
The Home Depot, Inc. HD
International Business Machines Corporation IBM
Intel Corporation INTC
Texas Instruments Incorporated TXN
Micron Technology, Inc. MU

Table 4.2: List of Firms with Corresponding Stock Tickers(21-38).
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Chapter 5

Empirical Results on Earnings

5.1 Descriptive Statistics

5.1.1 Black-Scholes Earnings Estimator

For each firm, the earnings estimations are computed using Equation 3.3 and following

the methodology described in the previous chapter. For readability, when discussing

the values of the earnings estimator, we present these in volatility units, formatted

as 100× σj. In the interest of conciseness, for firm-specific analysis, we focus on the

first ten stocks, in addition to a pooled assessment of all 38 tickers. The compiled

statistics summarizing the earnings volatility are detailed in Table 5.1.

During the empirical estimation, we encountered instances where σt,T1 < σt,T2

which contradicted our assumptions used in modeling our estimators. This discrep-

ancy predominantly occurred with companies experiencing lower trading volumes on

those days, suggesting liquidity issues and inadequate price discovery as the probable

cause.

From these summary statistics, we make the following observations. Zoom (ZM)

exhibited the highest mean earnings volatility among the analyzed firms at 14.6%,

alongside one of the highest volatility for a single earnings announcement at 20.7%.
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Firm Count Mean SD Min Max

TSLA 39 10.0 2.8 5.3 15.9
META 40 8.5 2.9 5.0 15.9
AAPL 40 5.1 1.3 2.0 8.6
AMZN 40 7.3 2.0 4.2 10.7
NFLX 40 11.4 2.8 7.1 20.4
AMD 38 11.7 4.1 5.4 23.8
ZM 15 14.6 3.6 9.7 20.7
MRNA 13 9.1 4.2 4.1 20.8
PYPL 30 7.2 2.6 2.1 14.5
GOOGL 35 5.6 1.3 1.9 8.6
Pooled 903 7.3 3.8 0.6 33.6

Table 5.1: Summary Statistics of Earnings Volatility Estimates

This heightened volatility can likely be attributed to the COVID-19 pandemic, which

due to a shift towards remote work, increased demand for Zoom’s services. This led to

increased uncertainty among investors regarding Zoom’s future performance forecasts

and growth projections. However, it is important to note that Zoom’s relatively recent

entry into the market resulted in fewer data points for analysis compared to other

firms above.

Conversely, Apple (AAPL) recorded the lowest mean volatility at 5.1%, alongside

the smallest standard deviation at 1.3%, and one of the lowest minimum estimates

at 2.0%. These values suggest that AAPL experiences comparatively lower levels of

uncertainty around its earnings than other firms. One plausible explanation for this

phenomenon is AAPL’s approach of disclosing product information through public

showcases and digital publications which may result in a more informed investor base,

and consequently, less uncertainty before earnings announcements.

The time series of earnings estimates across the firms is illustrated in Figure 5.1.

The yearly mean earnings estimates are shown in Table 5.2. This figure reveals

a noticeable increase in volatility for numerous firms around 2020, coinciding with

the onset of the pandemic. This connection is logical, given the heightened overall

uncertainty regarding market and firm performance during that period. This is also
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Figure 5.1: Time Series of Earnings Volatility across Firms

further supported by Table 5.2 where we can see a slight jump in mean estimates in

2020 and 2021.

Analyzing the Predictive Power of σj

With these estimates, we then delve into the predictive content of the volatility metric

σj, aiming to examine if a high σj predicts if the resulting earnings realizations are

more volatile. To do so, our approach involves calculating the magnitude of stock

returns, denoted as |R|, from right before the earnings announcement and right after

the earnings announcement. This value could be thought of as how much the earnings

volatility “realized”. Subsequently, we record the correlation between a given σj and

its corresponding absolute return |R| in Table 5.3, conducting this analysis for both

firm-specific cases and on a pooled basis.

Interestingly, the firm-specific correlations are generally not statistically signifi-

cant, and when they are statistically significant, the correlations are negative. This
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Firm 2016 2017 2018 2019 2020 2021 2022

TSLA 11.0 6.9 9.4 8.9 13.4 7.0 8.0
META 7.8 5.5 7.1 7.4 7.0 7.1 12.5
AAPL 5.4 4.2 4.6 5.1 4.7 4.1 5.9
AMZN 9.1 5.0 7.5 5.3 6.2 4.9 7.9
NFLX 12.5 9.9 10.7 9.8 10.6 7.8 12.8
AMD 12.7 13.1 12.3 12.7 10.3 7.1 7.9
ZM — — — 14.2 13.9 11.3 18.4
MRNA — — — 9.5 10.2 7.0 10.5
PYPL 5.9 5.1 6.2 6.0 6.8 7.2 11.9
GOOGL 6.3 4.5 5.8 5.0 5.4 4.5 7.3
Pooled 7.2 5.8 6.4 6.3 7.6 6.6 10.1

Table 5.2: Yearly Mean Earnings Volatility Estimates

Firm Correlation
All Data Before 2020

TSLA 0.13 0.28
META 0.14 0.26
AAPL -0.29* -0.47**
AMZN -0.01 0.02
NFLX 0.28* 0.24
AMD -0.07 -0.17
ZM 0.05 —

MRNA -0.27 —
PYPL -0.03 -0.46*
GOOGL -0.32* -0.19
Pooled 0.05* 0.15***

Table 5.3: Correlation between σj and |R|
* p < 0.1, ** p < 0.05, *** p < 0.01

suggests that on a firm-wide basis, higher σj did not necessarily correspond with

larger earnings realizations. On a pooled basis, the correlation is 5.1%, exhibiting

significance at the 10% significance level. This phenomenon could be due to sev-

eral factors, most notably the diversification effect, wherein in a broader dataset, the

effects of individual firms may cancel out, and the overall trend between earnings

volatility and absolute returns becomes more pronounced.

These results are somewhat unexpected as Dubinsky, in his paper [8], reports

positive and strongly significant correlations for firms like AAPL at the 1% level, along
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with a pooled correlation of 28%, which was also highly significant. Not only were our

correlations less statistically significant, but the levels of correlation were also lower.

This suggests that the predictive power of earnings volatility may have diminished

over time since 2004 when Dubinsky did his analysis. A plausible explanation could

be that the surge of retail investors in addition to the COVID-19 pandemic may have

led to more unpredictable earnings during the 2020s. Further analysis of earnings

announcements before March 2020, before the pandemic’s onset, reveals that the

pooled correlation increases to 15.1%, which is highly significant and aligns closer

with Dubinsky’s earlier results.

5.1.2 Stochastic Volatility Earnings Estimator

Now, we seek to see how our estimation results change under the stochastic volatility

model presented by maximizing the MLE in Equation 3.4. We note our results in

Table 5.5. We once again remind what each parameter is in Table 5.4

Parameter Description

κ Rate of Reversion to Mean Volatility
θ Mean Reverting Value of Volatility
ξ Volatility of Volatility
σj Earnings Volatility
σϵ Standard Deviation of Pricing Error

Table 5.4: Factor Notation

The fourth column of Table 5.5 provides the average estimate of σj for each firm.

To frame our results, we provide both the stochastic estimator’s results and the

average estimate from the term-structure estimator, under the modified Black-Scholes

model, in Table 5.6. The estimates below are once against expressed in volatility units

as before.

In general, the earnings volatilites derived from both models are relatively aligned,

with only NFLX displaying significant discrepancy. The volatility estimates under the
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Firm κκκ θθθ ξξξ σjσjσj σϵσϵσϵ

AAPL 3.00 0.44 0.63 0.06 0.01
META 2.90 0.47 0.51 0.08 0.01
TSLA 3.00 0.37 0.25 0.10 0.02
AMZN 2.41 0.44 0.67 0.07 0.01
NFLX 2.87 0.48 0.58 0.1 0.01
MSFT 2.18 0.20 0.52 0.06 0.01
INTC 2.90 0.39 0.75 0.06 0.8
AMGN 2.99 0.46 0.28 0.04 0.00

Table 5.5: Parameter Estimates for Firms under Stochastic Volatility with Jumps

Firm Stochastic Estimator Mean B-S Estimator

AAPL 5.7 5.1
META 8.0 8.5
TSLA 9.8 9.8
AMZN 7.1 7.1
NFLX 9.6 11.5
MSFT 5.6 4.6
INTC 6.1 5.8
AMGN 3.9 3.6

Table 5.6: Comparison of the Two Earnings Estimates for Each Firm

stochastic model tend to be slightly higher. Dubinsky in [8] suggests that the differ-

ences in these values arise from two factors: first, the term-structure estimator relies

on only two options, whereas the MLE estimation incorporates every option that is

influenced by the earnings announcement; second, the stochastic volatility model as-

sumes constant parameters throughout the entire time series, while the term-structure

estimator allows variations in volatility from one earnings to the next. Consequently,

a direct comparison of the values may not be entirely appropriate.

When comparing our results to those of Dubinsky’s, we observe that our uncer-

tainty values for INTC and AMGN closely matched, but we see noticeably different

values for AAPL and MSFT. Specifically, Dubinsky records values of 8.5% and 3.9%

for AAPL and MSFT respectively, whereas we obtain values of 5.7% and 5.6% for

the same firms. We suggest several reasons for these discrepancies. Intel (INTC)
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and Amgen (AMGN)’s business models have remained relatively consistent from the

early 2000s to now. In contrast, since the early 2000s, Apple (AAPL) has transitioned

from a computer manufacturer to a more diversified consumer electronics company.

During Dubinsky’s study, Apple had just recently launched the iPod, and the iPhone

and iPad had yet to be released, and therefore, earnings were more vulnerable to

the outcomes of a few product lines. This may have led to the higher value that

Dubinsky records. As Apple matured and diversified its product base, in addition to

the product showcases Apple holds, the volatility surrounding earnings has dropped.

Meanwhile, Microsft (MSFT) has undergone significant technological shifts since the

early 2000s moving away from a stable business model focused on software sales,

to embracing advancements in mobile computing, artificial intelligence, cloud com-

puting, and subscription-based services. This shift in strategy has led to increased

volatility surrounding earnings in the rapidly changing tech landscape.

5.2 Decomposition Results

5.2.1 Results and Discussion of Linear Model

Using the multiple linear model discussed in the previous section, we present the

coefficients along with their statistical significance in Table 5.8. In this table, we

provide everything in terms of percentage values for readability. In Table 5.7, we

once again provide the notation for which we will be describing our features in the

following analysis. The analysis was conducted for both firm-specific models and a

pooled model aggregating data from all 38 firms. Consistent with our earlier approach,

we choose to include only the firm-specific results for the biggest five companies, given

that the firm-specific results as a whole tended to be less statistically significant than

the pooled model.

Several key insights emerge from our analysis. First, we observe that the biggest
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predictor of earnings volatility is the previous quarter’s earnings volatility. The coef-

ficient of this factor within the pooled regression is 35.9% and highly significant.

Figure 5.2: Previous Earnings Volatility vs. Current Earnings Volatility

In Figure 5.2, the previous quarter’s earnings volatility σj−1 and the current earn-

ings volatility σj are plotted against each other. This visual analysis reinforces the

statistical findings, illustrating a clear trend where increased earnings volatility in

the previous quarter is associated with heightened earnings volatility in the current

quarter. This suggests that the uncertainty experienced in one earnings can carry

over and influence expectations in subsequent announcements.

We then examine the impact of the analyst forecast variance features on the earn-

ings uncertainty. Surprisingly, the variance around analysts’ forecasts appears to exert

minimal influence on the uncertainty. Many of the coefficients turn out to be statisti-

cally insignificant, or in cases when significance is observed, the relationship is often

negative, posing a counterintuitive scenario. This suggests that greater divergence

in analysts’ predictions about fundamental values translated to reduced uncertainty

regarding earnings outcomes. Out of the pooled model, we see that the sole signifi-

cant variable was the variance in revenue (SAL) forecasts for a given year, denoted
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by ANSAL,Y . This emphasis on revenue as a key fundamental value is logical, given

that many of the analyzed firms are valued based on the EV/Sales multiple. Many

of the analyzed firms are characterized by high growth and a lack of profitability,

and so investors often prioritize revenue growth over profitability in their valuation.

Further analysis must be done to explain these results. One potential explanation is

that our measure of analyst dispersion may not accurately capture the true variance

of opinions over time. For example, one method could be to look into the variance of

opinion over time before the earnings quarter for the same analyst as a time series. If

an analyst is constantly changing their forecast, this may signal there is uncertainty

in how the earnings may turn out.

The analysis of earnings uncertainty across the different quarters yields an inter-

esting result. Initially, we hypothesized that both quarters 3 and 4 would exhibit

heightened earnings uncertainty over the other two quarters. Quarters 3 and 4 an-

nouncements are closer to the holiday season, leading to a boost in sales which could

result in greater volatility on earnings as there is a broader range of earnings outcomes

that a firm could report. Additionally, the fourth quarter serves as the end of the

fiscal year for many firms, where a company usually summarizes its current year and

discusses future guidance and plans for the upcoming fiscal year. Therefore, there

tends to be more information that is usually disclosed in the fourth quarter report

compared to the other earnings announcements, which may lead to investors pricing

in more volatility. However, when we observe the results, it appears that the quarter

information is not very statistically significant.

We find that the other factors align with intuitive expectations. The coefficients

associated with the market cap factor are predominantly negative, suggesting that

larger companies experience less earnings volatility. This trend is logical as bigger

firms tend to have more diversified operations and streams of cash flow, and therefore

are less susceptible to fluctuations around earnings. We also observe that the current
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volatility in the market, measured by the VIX, is also a significant predictor of indi-

vidual earnings volatility. When there is higher volatility in the market, earnings also

tend to be more volatile as indicated by the positive coefficients from these results.

Both of these results are also highly significant in the pooled model and among the

firm-specific models as well. We also see that the number of years since the firm was

established is also a significant predictor. In the pooled model, the negative coefficient

associated with the firm’s age suggests that older firms experienced lower volatility.

This is in line with expectations and how other studies have treated this value. Many

studies in the field use the age of a firm as a proxy for uncertainty in a firm, with the

expectation that newer and younger companies exhibit more earnings volatility.

Notation Description

σ2
j−k Earnings Estimator from kth Previous Quarter

ANEPS, Y Analyst Dispersion around EPS for the Yearly Forecast
ANEPS, Q Analyst Dispersion around EPS for the Quarterly Forecast
ANSAL, Y Analyst Dispersion around Revenue for the Yearly Forecast
ANSAL, Q Analyst Dispersion around Revenue for the Quarterly Forecast
VIX S&P500 1M Implied Volatility from VIX
logMkt Log of the Market Cap of the Company
Years Number of Years since IPO
Q2 Indicator Variable for Q2
Q3 Indicator Variable for Q3
Q4 Indicator Variable for Q4

Table 5.7: Notation of Features

5.3 Prediction Results

In this section, given our focus on using these models for prediction and trading,

and considering the superior average performance of the pooled models as seen in

the previous section, from this section forward, we exclusively detail the coefficients

and performances from our pooled models only. For the out-of-sample testing and

cross-validation, we split the training set into n = 30 partitions.
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Feature TSLA META AAPL AMZN NFLX Pooled

const 2.4 27.0*** -0.2 8.3*** 8.5*** 2.3***
(2.8) (6.3) (1.7) (2.3) (2.7) (0.3)

σ2
j−1 20.8 3.4 8.7 70.4*** 23.2 35.9***

(17.7) (15.7) (19.9) (17.9) (17.3) (2.8)

σ2
j−2 6.3 14.4 -22.2 -9.5 -20.6 27.5***

(18.0) (13.0) (19.2) (21.7) (18.3) (3.0)

σ2
j−3 10.9 -31.6** -15.1 9.2 15.9 -0.8

(21.4) (12.4) (21.0) (17.5) (15.9) (2.9)

ANEPS, Y 0.0 0.3 -1.3 -0.0 0.6 0.0
(0.0) (1.8) (2.6) (0.0) (0.8) (0.0)

ANEPS, Q 0.1 4.3* -0.2 -0.0 0.0 -0.0
(0.1) (2.4) (1.5) (0.0) (0.5) (0.0)

ANSAL, Y 3.6 1.1 -1.1 7.6*** 1.5 1.4***
(2.2) (2.6) (3.8) (2.7) (7.0) (0.4)

ANSAL, Q 2.8 -8.8** 0.4 -1.6 -8.8 0.2
(2.1) (3.7) (2.3) (2.1) (9.4) (0.3)

VIX 5.9* -3.9* 1.5* 2.6** 8.4*** 3.4***
(3.2) (2.2) (0.8) (1.1) (2.7) (0.5)

logMkt -0.1 -1.4*** 0.1 -0.6*** -0.5** -0.1***
(0.2) (0.3) (0.1) (0.2) (0.2) (0.0)

Years -0.0 0.3*** -0.0 0.1*** 0.1 -0.0***
(0.1) (0.1) (0.0) (0.0) (0.1) (0.0)

Q2 0.1 -0.1 -0.1 0.1 0.0 0.0
(0.3) (0.2) (0.1) (0.1) (0.2) (0.1)

Q3 0.2 -0.0 -0.1 0.2 0.3 0.0
(0.3) (0.2) (0.1) (0.2) (0.2) (0.1)

Q4 0.4 -0.4* -0.0 -0.4* -0.2 -0.0
(0.2) (0.3) (0.1) (0.2) (0.5) (0.1)

Table 5.8: Coefficients (%) of the First 5 Firms and Pooled
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are presented in parentheses

underneath each coefficient.



5.3.1 LASSO

With the LASSO model, we initially normalize our features to achieve a mean of

0 and a standard deviation of 1. Through the cross-validation process, we select a

regularization parameter of λ = 0.000215. The performance of our LASSO model is

assessed through its Mean Squared Error (MSE) and R2 score which are reflected in

Table 5.9. On the entire training set, the model achieves an MSE of approximately

1.032× 10−5, while on the out-of-sample data, the model achieves an average MSE of

1.2× 10−5. The model indicates a high level of explanatory power with an R2 score

of 0.60 on the training set and an out-of-sample R2 score of 0.52. The R2 scores,

representing the proportion of variance in the dependent variable explained by the

predictors, affirmed the model’s strong predictive capabilities.

Metric Training Set Out-Of-Sample

Mean Squared Error (MSE) 1.0× 10−5 1.2× 10−5

R2 0.60 0.52

Table 5.9: LASSO Model Performance Metrics

Feature Coefficient

const 0.51
σ2
j−1 0.31

σ2
j−2 0.1

σ2
j−3 0.12

ANEPS, Y 0.0
ANEPS, Q 0.0
ANSAL, Y 0.02
ANSAL, Y 0.0

VIX 0.07
logMkt -0.09
Years -0.0
Q2 0.0
Q3 0.0
Q4 0.0

Table 5.10: Coefficients (%) of the LASSO Model
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Figure 5.3: Plot of LASSO Predictions and Actual

Furthermore, when observing the coefficients in Table 5.10, we see that several

features have been reduced to zero, illustrating the ability of LASSO to perform au-

tomatic feature selection. The LASSO model simplified the model complexity and

highlighted the features that have the most predictive value. These are in line with

our expectations from our earlier discussion on the decomposition of earnings. This

method not only further enhances the interpretability around earnings but also im-

proves the model’s performance on unseen data. We plot the predicted values and

actual values together across time in Figure 5.3 and plot the predicted against the

actual in Figure 5.4. The analysis of the scatter plot indicated that generally, the

LASSO model neither systematically underpredicted nor overpredicted the volatili-

ties.
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Figure 5.4: Plot of LASSO Predictions against Actual

5.3.2 Random Forest

We do a similar test of performance using the random forest model. Through the

randomized search cross-validation process, we select the following hyperparameters

for our model: 1, 000 trees, a minimum of 5 samples required to split an internal node,

a minimum of 1 sample required at a leaf node, and a maximum depth of 5 per tree.

After training our model, we extract feature importance from our random forest

model which is then presented in Figure 5.5. We can clearly observe that the esti-

mators lagged by one quarter and two quarters emerge as the most critical features

among all the predictors. Following these, there is a significant decline in importance

for the subsequent features. Notably, unlike the other lagged variables, the estimator

lagged by three quarters exhibits much less importance. This suggests that the earn-

ings information from the last two quarters plays a more pivotal role in forecasting

current volatility, as opposed to information from earlier periods.

Once again, we assess the performance of our random forest model through the
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Figure 5.5: Feature Importance from our Random Forest Model

MSE and R2 score, with the results detailed in Table 5.11. We see that the random

forest model achieved a higher R2 score of 0.85 and lower MSE of 3.8× 10−6 on the

entire training set compared to the LASSO model. However, we see that the out-of-

sample performance was relatively similar between the two models on both metrics.

When we plot the predicted values and actual values in Figure 5.6, we observe that

the random forest model has a tendency to underestimate the spikes in volatility.

This becomes more apparent in Figure 5.7 where an increased number of points fall

above the line as we move leftward, highlighting instances of larger volatility spikes

that the model failed to accurately predict.

The comparison of the performance scores between the two models reveals that

the two models performed relatively comparably, a somewhat surprising result given

the random forest model’s reputation for predictive accuracy and its ability to capture
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Metric Training Set Out-Of-Sample

Mean Squared Error (MSE) 3.8× 10−6 1.2× 10−5

R2 0.85 0.52

Table 5.11: Random Forest Model Performance Metrics

Figure 5.6: Plot of Random Forest Predictions and Actual

complex non-linear relationships. This performance may be attributed to the limited

number of features we have available, which restricts the complexity of trees that can

be developed in the random forest model. Consequently, a parameterized model like

LASSO manages to achieve comparable or even superior performance under these

conditions. Given their similar performance, we opt for the simpler LASSO model

for our trading strategies in the next chapter.
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Figure 5.7: Plot of Random Forest Predictions against Actual
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Chapter 6

Trading Strategies

6.1 Greeks

Before discussing option trading strategies, it is essential to first begin with an un-

derstanding of the Greeks. The Greeks are a set of measures used to assess the level

of risk of an option in the options market. A Greek symbol is assigned to each risk,

and each measures the sensitivity of the price of the option to one or more underlying

parameters. In this thesis, our primary focus will be on the following Greeks: Delta

(∆), Gamma (Γ), and Vega (ν).

6.1.1 Delta (∆)

Delta (∆) measures the rate of change of an option’s price with respect to a $1 change

in the price of the underlying asset. A positive delta indicates a desire for a positive

movement in the spot price, while a negative delta indicates a desire for a negative

movement in the spot price. For call options, delta values typically range from 0 to

1 with the value becoming more positive as the option becomes more in-the-money

(ITM). For put options, delta values range from 0 to −1 with the value becoming

more negative as the options become more ITM. Besides measuring price sensitivity,
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delta also serves as an approximation for the option’s probability of expiring ITM [16].

Therefore, an at-the-money (ATM) option typically has a delta whose magnitude is

around 0.5, indicating a roughly equal chance of ending ITM or out-of-the-money

(OTM). The stock by definition also has a delta of 1. Below is a figure depicting how

an option’s delta changes in relation to the stock price:

Figure 6.1: Delta vs. Stock Price under Black-Scholes Model

6.1.2 Gamma (Γ)

Gamma (Γ) measures the rate of change of ∆ with respect to a $ 1 change in the

price of the underlying asset, reflecting the convexity of an option’s value. For any

long position, gamma is always positive and typically reaches its peak value for ATM

options as these options are most sensitive to changes in the underlying asset price.

Gamma plays a role in relation to the underlying asset’s realized volatility. Specifi-

cally, when the underlying asset exhibits significant realizations of volatility and sharp

price fluctuations, gamma can enhance a portfolio’s value, notably in strategies that

involve delta-hedging. With rapid price fluctuations and a high gamma, the delta

of the option changes rapidly, which can be addressed by adjusting our delta-hedge
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to capture gains from these movements. Below is a figure depicting how an option’s

gamma changes in relation to the stock price:

Figure 6.2: Gamma vs. Stock Price under Black-Scholes Model

6.1.3 Vega (ν)

Vega (ν) measures the rate of change of the option’s value with respect to a 1% change

in the implied volatility. For any long position, vega is always positive, meaning that

the option’s value increases as implied volatility increases. Like gamma, vega typically

reaches its peak for ATM options. Below is a figure depicting how an option’s vega

changes in relation to the stock price:

Vega and gamma play an integral role in any volatility trading strategy. A positive

vega allows us to capture the changes in the expectation of volatility. Similarly, having

positive gamma, while maintaining a delta-neutral position, enables us to benefit from

the convexity of the option price. This allows us to capture the value created from

the realized volatility. When realized volatility is high and the asset price moves

significantly, then we can rebalance our portfolio to realize a profit.
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Figure 6.3: Vega vs. Stock Price under Black-Scholes Model

6.2 Option Structures

In the following section, we describe two option structures, the straddle and strangle,

that we utilize in our trading strategies. Before we do so, we first adopt specific

terminology that goes along with trading options. From here on, we refer to our

actions as either taking a “long” or “short” position.

Holding a long position in an option signifies that you own the option contract.

For example, if you are long a call option, this gives you the right to buy a stock at a

certain price, and if you are long a put option, this gives you the right to sell a stock

at a certain price. On the other hand, taking a short position in an option signifies

that you have written or sold the option contract. For example, if you are short a

call option, you are obligated to sell the stock at a certain price if the counterparty

exercises the option, and if you are short a put option, you are obligated to buy the

stock at a certain price if the counterparty exercises the option.

Adopting this terminology will help mitigate any confusion about the action that

is being taken. For instance, you could be long a put option by “buying” the option

contract on the market, which could ultimately lead to “selling” the underlying stock
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upon exercise. Therefore, to maintain clarity and consistency, we will use the terms

“long” and “short”. When detailing the structures below, we will describe them from

the perspective of holding a long position. However, each structure can be adapted

to a short position by inverting each leg of the trade.

6.2.1 Straddle

A long straddle involves being long both a call option and a put option on the same

underlying stock with the same strike price and expiration date. The payoff diagram

of a straddle at expiration is shown below:

Figure 6.4: Straddle Payoff

In the case of our trading strategies, we choose our strike to be ATM. We focus

on this structure and strike for the following reasons:

• Delta (∆): The delta of an ATM straddle when initially bought is near zero

as the delta of the ATM call and the delta of the ATM put offset each other.

Therefore, the value of this structure is insensitive to small price movements.

• Gamma (Γ): The gamma of an ATM straddle is high as the gamma is close to

its peak for ATM options as shown above. This means that the delta of the
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position will become more positive and negative with small movements in the

underlying price, which means that large movements in the price will benefit

this structure and increase its value.

• Vega (ν): The vega of an ATM straddle is high as the vega is close to its peak

for ATM options. Therefore, the value of the straddle increases as the implied

volatility increases.

Employing a straddle structure aligns with our trading approach as we focus on

predicting earnings volatility and not the directional movement of a jump. Earlier

as seen from Table 5.3, we established a significant relationship between earnings

implied volatility and how much the volatility of the earnings actually realizes after

the announcement. Thus, the decision to buy and sell ATM straddles is strategically

informed.

6.2.2 Strangle

A long strangle shares similarities to a long straddle, involving once again being long

both a call option and a put option. However, unlike a straddle where the options

had the same strike, here the options have different strike prices, with the call strike

being higher than the underlying asset price and the put strike being lower. This

indicates that both options are OTM. The payoff diagram of a straddle at expiration

is shown below:

Like the long straddle strategy, the strikes of the strangle can be chosen symmet-

rically such that the delta of this structure is near zero, and therefore, once again,

we focus on making bets on volatility and not direction. Since the gamma and vega

of OTM options are lower than that of ATM options, we see that the gamma and

vega of the strangle are lower than that of the straddle. However, this is offset by

the fact that OTM options are less expensive, and therefore entering a long strangle
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Figure 6.5: Strangle Payoff

is generally less expensive than entering a long straddle.

6.3 Trading Strategies

When back-testing our trading strategies, we must first establish a set of initial as-

sumptions to simplify the model. We list the following assumptions of the market

below:

1. We assume there are no trading costs or fees involved whenever we go long or

short options. Therefore, transactional fees do not impact our return. We also

assume that there are no additional fees from our short position. We also choose

to operate at the midpoint of the bid-ask spread.

2. We operate under the assumption of infinite liquidity such that our trades do

not influence market prices, regardless of the volume we wish to transact in

both the option and underlying asset price.

3. We assume the ability to execute trades immediately at the desired price, as-

suming an optimal market transaction scenario where our orders are filled in-

stantaneously at the best available price.
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4. We consider unlimited depth in our position, meaning there is no cap on the

amount we can lose at any given point, allowing us to fully explore the strategy’s

risk profile without restrictions on losses or drawdowns.

6.3.1 Trading on Past Mean Earnings Volatility

Our most straightforward strategy involves trading based on the mean earnings

volatility we obtain from the term-structure estimator. To do so, we first find the

mean earnings volatility using the term-structure estimator from our training set. We

then evaluate the earnings volatility 7 days prior to the earnings announcement. If

the level is below the mean we estimated, we opt to long straddles. Conversely, if

it exceeds the mean, we opt to short straddles. This strategy hinges on the premise

that when the earnings volatility is below its historical average, the market may be

underestimating the volatility of the upcoming earnings and vice versa.

When testing this strategy, we focus on options with the nearest expiration date

after the earnings announcement. Our strategy is to hold the positions through

the announcement and unwind them the earliest trading day after the earnings are

disclosed.

Subsequently, we refine this strategy by replacing the mean earnings volatility

with the estimate of earnings volatility derived under the stochastic volatility model.

This allows us to assess which approach serves as a more effective baseline for trading

around earnings announcements. For the sake of brevity, we label these strategies 1

and 2, respectively.

6.3.2 Trading on Predicted Earnings Volatility

Building on the predictive insights from the previous chapter, where the LASSO

model was identified as having superior performance over the random forest model,

we utilize all available fundamental information before an earnings and our model
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to forecast the earnings volatility. We utilize a similar methodology to our trading

strategy above but now anchor to this predicted value as our baseline. If the market’s

current volatility level is below the predicted value, we opt to long straddles and vice

versa.

This strategy relies on the premise that our straddle position will gain in value as

the discrepancy between the market’s priced-in earnings volatility and our model’s

predicted earning volatility narrows as the earnings date approaches. This approach

also implicitly assumes that the diffusive volatility level will remain relatively stable

from the time we first initiate our position until the earnings announcement. There-

fore, when trading, we only trade on our belief of the volatility of the earnings.

We then further augment this strategy utilizing strangles, again leveraging our

predicted earnings volatility. With this new approach, we observe the percentage

difference between the predicted value and the current earnings volatility, adjusting

the strikes of the strangles based on the magnitude of this discrepancy. A greater

percentage difference prompts us to opt for strikes closer to ATM, leveraging options

with higher vega to maximize the impact of vega when significant mispricings in

volatility expectations are found. Conversely, for smaller discrepancies, we choose

strangles with strikes further from ATM, reducing our exposure to vega and gamma

while still positioning based on volatility expectations. This strategy allows us to

effectively balance both risk and reward.

Our strategy is implemented as follows: For differences exceeding 100%, we opt

for ATM straddles to exploit big mispricings of volatility directly. For differences

between 50% and 100%, we employ strangles with strikes set approximately 5% from

ATM. For any other scenario, our strategy utilizes strangles with strikes set about

10% from ATM. For example, consider an upcoming earnings announcement with the

stock currently at $100. If the measured earnings variance yields 0.01, but our model

predicts a level of 0.013, indicating a discrepancy of 30%, we opt to long strangles
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with strikes at $90 and $110. If instead, our prediction is at a level of 0.02, we long

ATM straddles with strike $100. We label these strategies 3 and 4, respectively. We

summarize all four strategies in Table 6.1.

Strategy Description

1 Long straddles if below mean, short straddles if above
2 Long straddles if below stochastic estimate, short strad-

dles if above
3 Long straddles if market’s volatility is below predicted,

short straddles if above
4 Long structure if market’s volatility is below predicted,

short structure if above:
ATM Straddles for >100% discrepancy,
Strangles 5% from ATM for 50%-100% discrepancy,
Strangles 10% from ATM otherwise

Table 6.1: Summary of Trading Strategies Based on Earnings Volatility

6.3.3 Delta-Hedging

For all of the trading strategies above, we construct the following portfolio for back-

testing. When it is time to trade, we go long or short N contracts:

N = 100, 000/(Vt ∗Q)

where Vt represents the market value of the straddle at time t and Q is the contract

size. We use Q = 100 consistent with the standard delivery of 100 shares for most

equity options. This ensures that across all tickers, we maintain an approximately

equal nominal value of options for every trade. If positions are taken long, financing

is secured by borrowing at the risk-free rate. Conversely, if positions are shorted,

then we gain on this cash at the risk-free rate.

Once we initiate our position, the gamma of the straddle causes the delta of our

position to deviate from 0 as the underlying stock moves. To mitigate this, we employ
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“delta-hedging” by adjusting our equity position daily. At the end of the trading day,

let us say we have the delta of our portfolio is:

∆Portfolio = N ∗Q ∗∆Straddle +X

where ∆Straddle is the delta of the straddle in the market and X is the number of

shares of stock we currently have in our portfolio. Since we want our portfolio to be

delta neutral, we adjust by acquiring or liquidating −∆Portfolio shares of stock: selling

shares if ∆Portfolio is positive and buying shares if ∆Portfolio is negative. To finance this

process, we borrow at the risk-free rate. We do this process at the end of every trading

day until our position is closed. This process ensures that the value of our portfolio

gains solely from changes in volatility instead of directional movements. Once the

trade ends, we liquidate our positions, converting everything into cash. The return

of the trade was determined by comparing the portfolio’s value before and after the

trade. Following this, we reset the portfolio to its original state before the next trade.

Figure 6.6 illustrates the execution of this strategy.

Figure 6.6: Execution of the Strategy
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6.4 Back-Testing and Evaluating Trading Perfor-

mance

To simplify assumptions, we use the current risk-free rate which we obtain from the

current 3 Month Treasury Bill Rate across all time periods. Since this is an annualized

value, we transform this value to different time periods as follows:

r = (1 + rAnnual)
1/N − 1

where N is the number of compounding periods per year. To get the daily risk-free

rate, we utilize N = 365 while for the weekly value, we utilize N = 52.

To evaluate our results, we look at the following benchmarks for each strategy.

First, we assess the success rate of the strategy for that a ticker by comparing the

instances of accurate buy or sell decisions against the total number of trades executed.

We determine if a strategy is accurate if we make a positive return from the execution

of the trade. For example, for TSLA, we made in total 12 earnings trades. Under

Strategy 1, five of the trades resulted in positive returns, giving us a success rate of

41.7%.

Furthermore, we benchmark our results to two alternative strategies:

1. We examine if the average return of our strategy surpasses the risk-free rate.

This benchmark determines if the expected return of the strategy outperforms

the returns from holding cash over the same time frame.

2. We evaluate whether or not the Sharpe ratio of our strategy exceeds that of

investing in the S&P 500 index. We compute two Sharpe ratios for the following

strategies for comparison: first, investment in the S&P during the same time

frame as our earnings which we call S&P500 (Week), as we invest through the

same week as our strategies. second, investment in the S&P from the start of

65



2020 and holding until the current period, with its Sharpe ratio adjusted to

a weekly measure, which we call S&P500 (Year), as we invest throughout the

entire year. The Sharpe ratio, a measure of the excess return per unit risk in a

strategy, is calculated as:

Sharpe =
µstrategy − rrisk free

σstrategy

This second benchmark serves to assess whether or not it is better to invest in

the S&P500 instead of executing our strategy.

6.4.1 Empirical Results of Back-Test

We back-test our strategies on MSFT, NFLX, TSLA, AAPL, META, AMZN, AMGN,

and INTC, which are the same tickers we found our estimates under the stochastic

volatility model as well. The strategies are back-tested on data that account for 12

earnings announcements per ticker. After finding our results on individual tickers,

we pool our findings, so that we can replicate a “portfolio” of tickers utilizing the

strategy.

The results for each strategy are found in Tables 6.2, 6.3, 6.4, and 6.5. The mean

return, standard deviation, and success rate are given as percentages. From these

results, we make the following observations. Analyzing individual tickers, we note

that AAPL has negative mean returns across all strategies. Additionally, TSLA has

negative mean returns in all strategies except Strategy 4. This indicates that it is

challenging to accurately forecast earnings-related uncertainty for these tickers, even

when utilizing a baseline value as in Strategy 1 and 2. On the other hand, AMZN

exhibits positive mean returns in every strategy, though with a slight decrease in

Strategy 4, and generally has a high Sharpe ratio, indicating high returns relative

to the risk taken. Observing the standard deviation of returns, we find it to be
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particularly high for META across all 4 strategies, highlighting huge swings in returns

for this ticker. However, most tickers display return standard deviations within the

range of 0.7 to 0.8, suggesting a consistent level of risk across the trades.

Looking at the pooled results, we see that Strategy 2, which leverages the stochas-

tic estimation value, yields the highest returns and highest Sharpe ratio, This lends

credence to the idea that our earnings volatility estimation under the stochastic model

is a better baseline estimation than the mean value derived from the modified Black-

Scholes model. Notably, the first three strategies have positive mean returns, with

Strategy 4 being the only strategy with a negative mean return. Interestingly, the

standard deviation of Strategy 4 is the lowest, aligning with the expectation that

utilizing strangles and straddles would reduce risk. In the future, testing different

heuristics on selecting strike prices for the strangles could potentially increase returns

while still keeping the risk low.

When evaluating the success rate of each strategy, we note that the success rate

of Strategy 1, centered on trading around the mean estimation, boasts the highest

success rate at 50%. Interestingly, despite the high frequency of correct predictions,

it results in the second-lowest return among the four strategies. Likewise, Strategy

4 has the second highest success rate, yet results in a negative return. This suggests

that although these two strategies are able to anticipate market volatility with relative

frequency, they underperform in profitability compared to the other two strategies,

which despite executing fewer successful trades, achieve higher gains in returns.
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Firm Mean SD Sharpe Success

MSFT 38.13 66.51 0.57 66.67

NFLX -11.47 81.22 -0.14 33.3

TSLA -16.2 37.13 -0.44 41.7

AAPL -6.59 54.12 -0.12 41.7

META 12.15 156.17 0.08 41.7

AMZN 33.54 80.89 0.41 66.67

AMGN 14.16 35.81 0.39 68.3

INTC -23.16 87.02 -0.27 50.0

Pooled 5.07 85.74 0.06 50.0

Table 6.2: Strategy 1 Performance (%)

Firm Mean SD Sharpe Success

MSFT 12.83 75.55 0.17 33.3

NFLX 16.54 80.38 0.21 41.7

TSLA -27.39 20.80 -0.92 16.7

AAPL -10.98 53.39 -0.21 41.7

META 50.66 148.25 0.34 41.7

AMZN 25.36 83.8 0.30 41.7

AMGN -6.59 37.88 -0.18 41.7

INTC 53.64 72.45 0.74 83.3

Pooled 14.26 84.71 0.17 42.7

Table 6.3: Strategy 2 Performance (%)

Firm Mean SD Sharpe Success

MSFT 12.84 75.55 0.17 33.3

NFLX 3.65 81.97 0.04 50.0

TSLA -16.2 37.13 -0.44 41.7

AAPL -10.98 53.39 -0.21 41.7

META 11.14 156.24 0.07 33.3

AMZN 25.36 83.8 0.30 41.7

AMGN -6.59 37.88 -0.18 41.7

INTC 53.64 72.45 0.74 83.3

Pooled 9.11 85.41 0.11 45.8

Table 6.4: Strategy 3 Performance (%)

Firm Mean SD Sharpe Success

MSFT -18.09 67.03 -0.27 33.3

NFLX -30.56 81.85 -0.38 50.0

TSLA 33.61 92.92 0.36 58.3

AAPL -12.77 67.9 -0.19 33.3

META -7.0 79.28 -0.09 58.3

AMZN 2.45 76.34 0.03 50.0

AMGN 12.2 76.98 0.16 58.3

INTC -10.26 76.9 -0.14 33.3

Pooled -3.80 79.95 -0.05 46.9

Table 6.5: Strategy 4 Performance (%)

Upon stratifying the returns by year, we observe that the highest returns gener-

ally occurred in 2022. One possible explanation for this phenomenon is the greater

market volatility experienced during that year due to rising inflation and aggressive

tightening of monetary policy by the Federal Reserve. Such market conditions allow

us in every trade made during that year to capture more volatility through earn-
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ings. This environment creates numerous opportunities for our strategies to exploit

discrepancies between predicted and actual earnings volatility, which amplifies our

ability to achieve higher returns during this time.

Firm 2020 2021 2022 2023

MSFT 20.66 23.11 66.37 37.69

NFLX -45.11 10.79 -19.96 34.41

TSLA 22.49 -23.30 -29.71 -49.86

AAPL 3.78 -65.02 36.37 24.16

META 5.89 -30.31 104.66 -169.27

AMZN 11.34 -14.72 103.96 11.44

AMGN 26.59 4.45 19.90 -7.30

INTC 58.36 -80.10 -51.92 75.08

Pooled 13.0 -21.88 28.71 -5.46

Table 6.6: Annual Returns (%) of Strat 1

Firm 2020 2021 2022 2023

MSFT -22.87 23.11 41.94 -37.46

NFLX -45.11 10.79 81.20 -34.18

TSLA -22.26 -23.30 -29.71 -49.86

AAPL -13.76 -65.02 36.37 24.16

META 1.87 -30.31 138.52 169.50

AMZN -9.49 -14.72 100.71 -11.21

AMGN -14.32 12.46 -19.67 -7.30

INTC 62.84 80.33 52.16 -74.85

Pooled -7.89 -0.83 50.19 -2.65

Table 6.7: Annual Returns (%) of Strat 2

Firm 2020 2021 2022 2023

MSFT -22.87 23.11 41.94 -37.46

NFLX 15.33 10.79 -19.96 34.41

TSLA 22.49 -23.30 -29.71 -49.86

AAPL -13.76 -65.02 36.37 24.16

META 1.86 -30.31 104.66 -169.27

AMZN -9.49 -14.72 100.71 -11.21

AMGN -14.32 12.46 -19.67 -7.30

INTC 62.84 80.33 52.16 -74.85

Pooled 5.26 -0.83 33.31 -36.42

Table 6.8: Annual Returns (%) of Strat 3

Firm 2020 2021 2022 2023

MSFT -42.82 26.30 -39.82 -38.52

NFLX 0.35 -6.84 -85.30 0.83

TSLA 93.35 0.46 -31.48 247.32

AAPL 36.87 -87.36 8.62 51.13

META 36.16 -24.89 29.31 -210.21

AMZN -40.15 -15.26 47.36 21.44

AMGN -10.67 54.82 -21.80 46.31

INTC 59.07 -42.85 -28.98 -12.98

Pooled 16.52 -11.95 -15.13 13.16

Table 6.9: Annual Returns (%) of Strat 4

Finally, we benchmark our pooled strategy to the metrics mentioned above. The

results are found in Table 6.10. We see that the profitable strategies have mean
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returns that are both greater than that of the risk-free rate and of both S&P measures.

Therefore, it is more profitable to utilize our strategy than to hold cash or invest in

the S&P during the times we were trading.

Additionally, we see that the most profitable strategy, Strategy 2, has a Sharpe

ratio higher than that of S&P500 (Week), which means that for the level of risk, this

strategy provides more return than investing in the S&P500 in that same week. We

also observe that Strategy 3 is relatively comparable in Sharpe to the S&P500 (Week)

and higher than the S&P500 (Year).

These results indicate that we are able to find strategies that are relatively suc-

cessful. However, it is important to note the limitation of this strategy imposed by

the frequency of earnings announcements. It is somewhat unrealistic to hold cash in

between earnings without investing it, making it somewhat impractical to solely rely

on the strategies above. A more feasible approach would be to consider these strate-

gies as advantageous overlays, beneficial for portfolio holders to implement during

earnings seasons and enhancing their performance selectively.

Strategy Mean (%) SD (%) Sharpe

Strategy 1 5.06 85.73 0.06
Strategy 2 14.26 84.71 0.17
Strategy 3 9.11 85.73 0.11
Strategy 4 -3.80 79.95 -0.05
S&P500 (Week) 0.50 3.31 0.12
S&P500 (Year) 0.26 2.89 0.09
Risk-Free 0.1 — —

Table 6.10: Comparison of Strategies to Benchmark
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Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we develop various methodologies for estimating earnings uncertainty

and volatility from options data. We find results of earnings volatility for tickers

under both a modified Black-Scholes model incorporating earnings jumps and a more

sophisticated stochastic volatility model with earnings jumps. After quantifying the

earnings volatility across multiple tickers using these methods, we then decompose

these values into various fundamental features. This analysis allows us to build intu-

ition on what features were important in predicting earnings volatility, and we find

that previous earnings volatilities from the last two quarters are the most predictive

features for the current earnings volatility. Subsequently, we leverage more complex

models, such as the LASSO model and a random forest model, to predict earnings

volatility and evaluate which model was superior. We find that while the random

forest model performs better on the training set, the overall out-of-sample results are

relatively comparable between the two models. We opt to utilize the LASSO model

for the trading step, seeing as the simpler LASSO model performed as well as the

more complex random forest model.
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We then develop multiple strategies utilizing options structures like straddles and

strangles to trade on the forecasted earnings volatility for a specific earnings announce-

ment. Four distinct strategies were implemented: one based on the mean earnings

estimate, another on the stochastic earnings estimate, and two strategies that uti-

lized our predicted earnings estimate derived from our LASSO model. We observe

that the strategy leveraging the stochastic earnings estimate had the highest return

and highest Sharpe ratio. We affirm that many of our strategies are viable, showing

comparable performance to certain benchmarks such as investing in the S&P500 or

holding cash at the risk-free rate.

Our work extends upon previous literature by developing profitable trading strate-

gies utilizing previously developed estimators of earnings volatility. This demonstrates

the potential value in leveraging discrepancies between our predicted and ’expected’

market volatility of earnings announcements.

7.2 Further Work

There are numerous interesting extensions that can be pursued within each aspect

of this thesis. We focus on two possible dimensions of future work: enhancing the

predictive model and refining the trading strategies.

7.2.1 Enhancing the Predictive Model

In our work, we encountered multiple limitations and challenges that could have

influenced our results and the interpretations of our findings. First, the inherent

nature of earnings announcements, occurring only four times a year for each ticker,

restricts the amount of data available on earnings volatility. We were also limited in

the number of features we were able to create and utilize. For example, the scarcity

of data on analyst forecasts may have affected our measure of analyst dispersion. In
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addition, we were only able to leverage a few different features in our models, which

may have hurt their predictive capabilities.

One direction for future research lies in the exploration of different stock price

models and their effect on the estimated earnings volatility. For example, we could

examine a model that allows for the possibility of discontinuous jumps not only in

the stock price process but also in the volatility process. Moreover, delving into

the statistical properties of our earnings estimators such as finding standard errors

could be valuable in thinking about how the uncertainty of our earnings estimates

compounds as we go from estimation to predictions to trading.

Further exploration could be extended toward the model features beyond the

few that were assessed in this study. One approach could be to incorporate market

sentiment analysis through the examination of news and articles, offering a method

to measure market expectations and sentiment surrounding earnings. The prevalence

of discussion around an earnings announcement may indicate more volatile earnings,

providing a more nuanced view of sentiment around the firm’s earnings.

Regarding model development and prediction, there exists a considerable opportu-

nity to enhance the complexity and accuracy of our models. In this thesis, we primar-

ily examined two models, the LASSO model and the random forest model. However,

future research could explore more sophisticated models such as Long Short-Term

Memory (LSTM) Neural Networks. LSTMs are an interesting avenue to research as

they are able to model complex dynamics in time series data, making them suited for

modeling nuanced behaviors found in financial markets. However, they present chal-

lenges in training. Nevertheless, leveraging a more extensive dataset that is comprised

of longer historical data and more firms could help mitigate these issues.
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7.2.2 Refining the Trading Strategies

When developing our trading strategies, we had to make some strict assumptions

about the market. An area of refinement could be to loosen some of those assumptions

such as transaction costs, which could impact the performance of our strategies.

The trading strategies that were described in this thesis represented basic strate-

gies that showcased the potential of leveraging our model to make profitable trades.

These strategies could be expanded to include alternative options structures such as

calendars or experiment with various strike prices that would balance the risk of our

strategies. Additionally, exploring strategies that leverage out-of-the-money options

could provide ways to exploit volatility skew and offer more insights into the dynamics

surrounding earnings. Finally, we could expand our strategies to include directional

strategies, in the context of “good” or “bad” sentiment around earnings, in order to

open up even more avenues outside of simple volatility bets for leveraging market

movements.

A more in-depth exploration of how these strategies could synergize and integrate

with more traditional portfolio strategies could be interesting. In this paper, we

examined each earnings event independently. In the future, we could extend our

study to estimate not only the earnings volatility of a specific company but also the

correlation between earnings volatility for pairs of companies. Understanding these

correlations may allow us to construct a broader diversified portfolio that takes into

account the collective earnings events of various sectors.
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