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Abstract

Adaptive clinical trial designs are aimed to improve efficiency and enhance ethical

considerations by dynamically allocating patients to treatments based on accruing

evidence. This thesis proposes an adaptive clinical trial as a finite-horizon Markov

Decision Process (MDP). The trial state comprises patient outcomes and Bayesian-

updated treatment success probabilities and is sequentially updated at each decision

point. To solve the resulting treatment allocation decision-making problem, we im-

plement a Soft Actor-Critic (SAC) framework that leverages maximum entropy re-

inforcement learning to balance exploration and exploitation effectively. To further

capture this balance, we employ a weight-adjusted Total Variation Distance (TVD)

component to the reward function. This enables us to quantify the value of informa-

tion gathered between decision points. We conducted numerical simulations where

the agent was trained under two training schemes: one where outcomes were gen-

erated using the true treatment success probabilities, and another where outcomes

were based on the agent’s estimated probabilities. Across diverse hypothetical sce-

narios varying in cohort size, trial length, and prior knowledge, our SAC-based policy

consistently approximated the ideal (oracle) policy in the true probability setting.

The agent was able to achieve success proportions close to that of the optimal policy

while judiciously allocating more patients to the superior treatment. When the model

was trained on estimated probabilities, performance degraded under high uncertainty

or poorly specified priors, sometimes favoring a fixed, non-adaptive approach. Our

results underscore the potential and limitations of employing SAC in adaptive trial

design. Our proposed model provides a foundation for utilizing reinforcement learn-

ing in a clinical trial setting, highlighting the need for accurate prior information

to fully realize its benefits. Our framework establishes a rigorous testbed for adap-

tive patient allocation, providing both theoretical insights and practical guidelines for

future clinical trial designs.
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Chapter 1

Introduction

1.1 Motivation

With the field of medicine constantly evolving, clinical trial results are one of the most

important and expensive aspects of new drug development. The cost of bringing a new

drug to market is estimated to be around $2.6 billion [8], putting a strong emphasis

on optimized trial design. Clinical trials themselves are intended to demonstrate the

efficacy and/or safety of a treatment. This is done by testing a null hypothesis with a

specified significance level. Rejecting the null hypothesis provides statistically signifi-

cant evidence that the treatment is efficacious, and conversely failing to reject the null

hypothesis leads to the conclusion that the treatment is ineffective. Intuitively, the

statistical results can make or break whether a drug goes on to a further stage, and

more importantly, whether the company developing the drug receives further funding

or not.

In terms of clinical trial design itself, the traditional and most basic trial design

allocates a fixed proportion p of subjects to treatment and 1− p to a placebo. Trials

designed as such do not employ any learning components as the trial progresses,

which can result in sub-optimal expenditure in an area where many pharmaceutical
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or biotechnology companies are already heavily budget-constrained.

Recently, broader research on adaptive trial designs has grown, notably after the

U.S. Food and Drug Administration (FDA) encouraged the use of adaptive designs

in 2019 [10]. Adaptive trials focus mainly on treatment allocation, which varies

depending on the phase of the trial. Earlier stage trials (e.g., Phase I) focus mainly

on safety confirmation, drug administration, and maximum tolerated dose (MTD),

middle stage trials (e.g., Phase II) focus mainly on finding the most successful dosage

(MSD) amounts, and later stage trials (e.g., Phase III) typically focus on efficacy

compared to an alternative or standardized treatment [20]. Despite the variability of

the intervention depending on the stage of the trial, the adaptive framework, at a high

level, is the same. Throughout the trial, patient response is monitored, and during

the planned stages of intervention, allocation is changed based on this accumulated

data. Structuring as such can be extremely helpful from both an exploration and a

safety perspective, as it provides a greater ability to test multiple treatments on a

given patient as well as the ability to terminate treatment early if adverse effects are

apparent.

Importantly, the ability to discretize a clinical trial and adjust allocations at each

intervention stage, you do so in a way that aims to minimize the number of patients

assigned to the inferior arm. In principal, this adaptive ability enables a more opti-

mized clinical trial design to be formulated, aimed at improving the overall outcomes

of the patients in the trial.

1.2 Literature Review

1.2.1 Objectives and Paradigms of Adaptive Trial Design

Clinical trials traditionally follow a fixed design, where key parameters (i.e., sample

size, allocation ratios, endpoints) are chosen in advance and no changes are allowed
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once the trial is underway [23]. On the other hand, adaptive clinical trial designs

permit prespecified modifications to the trial procedures based on interim data anal-

yses [23]. Such adaptations can occur at one or more interim points during the trial,

which enables the experimenters to learn and adjust allocations as patient outcomes

accumulate, rather than waiting until the trial’s end. Structuring a trial in an adap-

tive way has the overarching goal of making trials more efficient and ethical. This

goal can be achieved, for example, by stopping the trial early if the treatment is

overwhelmingly successful or futile, allocating more patients to superior treatments,

or focusing on responsive subpopulations [23]. Because of the mentioned efficiency

and ethical benefits, adaptive designs have grown in popularity over the past two

decades. To that end, Hatfield et al. (2016) note that adaptive designs have been

most employed in oncology trials, namely due to greater regulatory acceptance to-

wards adaptation [17]. Further, Park et al. (2018) highlight how adaptive designs

can improve the probability of trial success, reduce resource use, shorten development

time, and reduce the number of patients exposed to inferior treatments [23].

The primary motivations for adaptive designs include ethical and efficiency gains,

as the adaptive nature enables the allocation of more patients to superior treatments

as evidence accumulates. As such, many are drawn to the adaptive model’s potential

to improve patient outcomes during a clinical trial. Further, adaptive frameworks can

shorten development time and reduce costs by stopping early for success/futility [23].

By using accumulating information, adaptive trials increase flexibility compared to

traditional fixed designs, where you simply wait till the trials’ conclusion to see the

outcome. For example, the I-SPY 2 breast cancer trial adapts in real-time to patient

biomarker profiles and interim efficacy results, allowing promising therapies to be

identified faster [4, 37]. Likewise, the REMAP-CAP platform trial in critical care

employs adaptive randomization to efficiently evaluate multiple interventions within

a single trial framework. Within their trial design, they specifically highlight that
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the advantages of their design include ”efficient use of data, improved participant

safety, reduced downtime between trials, and enhanced knowledge translation” [3].

As such, the I-SPY 2 and REMAP-CAP trials illustrate how adaptation can answer

more questions with fewer patients and in less time than separate conventional trials.

Despite clear advantages, adaptive trials also present challenges. Proper statistical

control is crucial to avoid inflating Type I errors when multiple looks or modifications

are introduced [23]. Complex adaptations must be prespecified and simulated exten-

sively to convince regulators of their validity [10, 23]. Operationally, trial infrastruc-

ture must support rapid data turnaround and decision-making at interim analyses.

Not surprisingly within the space of medicine, there are also concerns about trans-

parency and potential bias. For instance, unblinded adaptations could inadvertently

reveal information and influence investigator behavior [23]. Regulatory guidance now

exists (e.g., the FDA’s 2019 guidance mentioned before) emphasizing careful plan-

ning and methodological rigor. The following sections review major adaptive design

frameworks, with emphasis on Bayesian methods, response-adaptive randomization,

and covariate-adjusted designs, before exploring how machine learning techniques are

expanding the adaptive toolbox.

1.2.2 Bayesian Adaptive Design Frameworks

Bayesian methods play a central role in many adaptive trial designs. The Bayesian

framework naturally accommodates ongoing learning: prior information is combined

with accumulating data to update posterior probabilities of treatment effects, which

can then trigger adaptations. This approach offers flexibility in decision-making like

probability-based stopping rules or adaptations, and can make use of all available

information at interim analyses [37]. Berry (2006) describes the Bayesian perspective

as ”ideally suited for synthesizing information from multiple heterogeneous sources

[and] its focus on probabilities of hypotheses for existing data makes it ideal for retro-
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spective analyses” [5]. In Bayesian adaptive designs, interim analyses often evaluate

the posterior probability that a treatment is superior. If this probability exceeds a

predefined threshold, the trial might adapt by stopping early for efficacy or drop-

ping inferior arms. Conversely, low posterior probabilities can trigger early futility

stopping [37]. Such rules were used in the I-SPY 2 trial, which employed Bayesian

hierarchical modeling and predictive probabilities to adaptively randomize patients

among treatment arms. In their trial description, they highlight ”regimens that show

a high Bayesian predictive probability of being more effective than standard therapy

will graduate from the trial with their corresponding biomarker signature(s)” [4]. As

such, Berry and colleagues developed I-SPY 2 to improve efficiency in the Phase II

setting by identifying effective regimens within patient subtypes (biomarkers) more

quickly.

Bayesian adaptive designs have been especially influential in oncology. The BAT-

TLE trial in lung cancer, for example, adaptively allocated patients to targeted ther-

apies based on Bayesian analysis of biomarker–outcome relationships. Similar to

I-SPY 2, the BATTLE trial focused on learning which subgroups benefited from

which therapy, and subsequently exploiting that learned knowledge [37]. In plat-

form trials like REMAP-CAP, Bayesian modeling enables simultaneous evaluation

of multiple interventions and combinations. Namely, patient outcomes update pos-

terior distributions for each intervention, guiding ongoing randomization ratios and

potentially adding or dropping arms mid-trial [3]. These Bayesian platform trials

exemplify how adaptive designs can answer multiple questions under one master pro-

tocol. Instead of using typical statistical analysis methods (i.e., hypothesis testing)

that fixed trials rely on, Bayesian trials instead use computational/simulation-based

methods like Monte Carlo simulation to calculate posterior probabilities. Further, the

use of posterior error probabilities or Bayesian stopping rules (often corresponding

to desired frequentist error levels), are employed to help strong control over error
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rates. Conveniently, the FDA guidance recognizes these aspects and outlines certain

simulation-based approaches [10].

One advantage of Bayesian adaptive designs is the ability to incorporate prior

knowledge such as historical data or expert belief into the analysis. This can improve

efficiency when prior information is reliable, essentially borrowing strength to reduce

the required sample size. However, heavy reliance on priors can be controversial, as

if the prior is misspecified, it may bias results. This can be a big problem because

regulators typically scrutinize the choice of certain parameters in confirmatory trials.

Namely, scrutiny of a trial’s power is broadly known, so naturally, the choice of priors

is paramount. Another feature is predictive probability monitoring: at interim points,

one can calculate the probability of eventual success if the trial were continued to the

end, and stop early if this predictive probability is too low or high [37]. Thall et

al. (2007) and others have demonstrated such Bayesian early stopping rules that

maintain ethical equipoise while controlling error rates [32]. Although there is yet to

be a widespread adoption of Bayesian adaptive trials in practice, the research efforts

have grown considerably, especially with the growing application of machine learning

in healthcare.

1.2.3 Response-Adaptive Randomization (RAR)

Response-adaptive randomization is a class of designs where the probability of assign-

ing patients to each treatment arm is adjusted throughout the trial based on observed

outcomes of participants enrolled so far [35]. The core idea, introduced in seminal

works by Thompson (1933) and others, is to “play the winner”, meaning allocate

more patients to arms showing better efficacy, in order to treat patients more suc-

cessfully on average [35]. In a two-arm trial, for example, if interim data suggest the

experimental treatment is outperforming the control, an RAR design will progres-

sively assign a greater fraction of new patients to the experimental arm. Formally,
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Thompson’s Bayesian adaptive allocation (now often called Thompson Sampling)

assigns patients according to the posterior probability each treatment is superior.

Other RAR procedures include the “play-the-winner” rule and biased coin designs,

which alter randomization ratios based on observed responses while maintaining some

randomization to explore each arm [1].

RAR appeals for ethical reasons as it can reduce the number of patients exposed

to inferior treatments, a point often highlighted as a key ethical advantage of adaptive

trials [23]. In oncology trials, for instance, RAR might spare patients from an inferior

standard therapy if the experimental treatment shows early promise. However, a well-

known trade-off is that highly unbalanced allocations can reduce statistical power or

precision in estimating treatment effects [25]. Meaning, that if one arm is allocated

to only a small fraction of patients, comparing outcomes between arms becomes more

uncertain. For this reason, many RAR designs impose constraints such as not letting

the allocation probability for any arm go below a certain floor. Doing so aims to

ensure continued learning about all treatments, and avoid the potential loss of power.

Robertson et al. (2023) illustrate the RAR setup in a setting with K treatment arms.

By letting ai = (a0,i, a1,i, . . . , aK,i) represent the allocation vector for patient i as

well as denoting aj = {a1, . . . , aj} and y(j) denote the sequence of allocations and

responses observed for the first j patients respectively. In doing so, RAR determines

the allocation probability πk,i conditioned on the previous allocations and responses

observed, a(i−1) and y(i−1). Specifically, the authors denote this probability as follows:

πk,i = P(ak,i = 1 | a(i−1), yi−1) (1.1)

where ak,i is a binary indicator variable that denotes the observed treatment allocation

for patient i, taking a value of 1 if patient i and allocated to treatment k and 0

otherwise [25].
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From a theoretical standpoint, Hu and Rosenberger (2006) established many

asymptotic properties of RAR procedures, showing that certain designs can target

a desired allocation proportion that optimizes an objective such as power or patient

success [18]. On the other hand, critics have pointed out potential pitfalls of RAR in

confirmatory trials. For example, Korn and Freidlin (2011) argued that in some cases

RAR offers minimal ethical advantage yet complicates the trial and its analysis. This

is the case because the clinical trial setting is highly fixated on the scientific/biological

side of their research, and less on the mathematical framework of their trial if they’re

only getting a minor benefit. Blinded adaptive randomization can also be problematic

as if outcomes are obvious (e.g., survival vs. death), investigators might guess the

shifting allocation ratios, potentially unblinding the trial and introducing bias [23].

Despite these concerns, RAR is a great foundation to build off of for adaptive designs.

Much literature has shown (typically via simulation) the design superiority over fixed

designs, however as mentioned before actual implementation of such designs has been

minimal.

1.2.4 Covariate-Adaptive and Covariate-Adjusted Designs

Covariates (patient characteristics) can play a crucial role in trial design adaptations.

Covariate-adaptive randomization generally refers to methods that adjust allocation

probabilities to achieve balance on baseline covariates across treatment arms. A clas-

sic example is Pocock & Simon’s minimization (1975) method, which isn’t response-

adaptive, but does adaptively assign each new patient to the treatment that would

minimize imbalance in stratification factors [24]. Such methods ensure the compara-

bility of groups with respect to important prognostic variables, improving trial credi-

bility and statistical power. Minimization and related covariate-adaptive schemes are

widely used in practice (especially in smaller trials) to prevent random imbalances

in covariates. They are typically considered separate from response-adaptive designs,
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we mention it here to highlight that adaptiveness in trial conduct can also target

covariate balance and not strictly patient outcomes.

More pertinent to our focus is covariate-adjusted response-adaptive (CARA) de-

signs, which naturally incorporate patient covariates into the response-adaptive al-

gorithm [36]. Here, the idea is that treatment success probabilities may differ across

subpopulations defined by covariates, hence an adaptive algorithm should account for

these differences rather than treating the patient population as homogeneous. Rosen-

berger et al. (2001) pioneered CARA for binary outcomes, showing how to adjust the

randomization ratio using both past outcomes and covariate information [27]. One

approach is to effectively stratify the adaptive randomization by covariate profiles.

For instance, in a trial with male and female patients, a CARA design might maintain

separate adaptive randomization schedules for each sex, recognizing that treatment

efficacy could differ by sex. Alternatively, covariates can be integrated through mod-

eling, where one fits an outcome model that includes covariates, and then uses the

model’s predictions to guide allocation for incoming patients. Rosenberger and col-

leagues did so by formulating an adaptive allocation using a standard logistic response

model. Specifically, they consider two treatments, A and B, with binary responses

(Xi = 1 if success;Xi = 0 if failure. In letting pi denote the probability of success

for the ith patient, Ti the treatment indicator (1 if A; 0 if B), and zi the K-vector of

covariates, they assume the following standard logistic response model:

logit(pi) = α + βTi + z′iγ + Tiz
′
iδ. (1.2)

Here, β represents the treatment main effect, γ the K-vector of covariate main effects,

and δ the K-vector of treatment-covariate interactions. Using this model, maximum

likelihood estimates of the parameters can be obtained from prior patient data. The

resulting covariate-adjusted treatment effect is then mapped via the logistic function
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to determine the probability of assigning each new patient to treatment A, thereby

favoring the treatment with a higher predicted success rate based on the patient’s

covariates.

Another noteworthy paper by Zhang et al. (2007) studied the theoretical prop-

erties of CARA under generalized linear models. They proved that with appropriate

design, the allocation proportions can target an optimal solution even as covariates

come into play. Specifically, they highlighted that under a CARA design, ”we can

find optimal allocation for each fixed value of the covariate” and subsequently char-

acterized the asymptotic normality of estimators [38]. Cheung et al. (2014) extended

this to logistic-regression settings for binary outcomes, providing methods to main-

tain both covariate balance and outcome adaptiveness [7]. The reason we mention

these works is to highlight that standard statistical inference can be achieved despite

the complex dependency of allocation on covariates and responses.

Tying back to the RAR framework we noted in the section above, Robertson et

al. (2023) highlight that the RAR framework has an inherent flexibility that allows

it to also depend on outcome-impacting covariates. Using the same notation defined

in the RAR procedure, the authors further let x(j) = {x1, . . . ,xj} denote a vector of

observed covariates. In doing so, it naturally follows that the allocation probability

πk,i under the CARA framework is:

πk,i = P(ak,i = 1 | a(i−1),yi−1,x(i)) (1.3)

In practice, covariate-adjusted adaptivity is especially relevant to personalized

medicine trials. If specific biomarkers or genetic signatures are known to predict

treatment benefits, one may implement a biomarker-stratified adaptive randomiza-

tion. In this setting, patients are first classified by biomarker-defined subgroups, and

then within each subgroup, adaptive randomization allocates patients preferentially

10



to the superior treatment for that subgroup [37]. This is a CARA design in spirit,

though operationally it is likely more resemblent to running parallel adaptive trials in

each stratum. The complication arises when biomarkers or predictive covariates are

unknown and part of the trial’s goal is to discover them. In such cases, more research

is emerging around advanced methods like machine learning which aim to learn the

covariate-treatment interaction structure on the fly.

1.2.5 Approximation Methods and Complexity Handling for

MDP Adaptive Frameworks

The Simulation-based bounded Learning-adjusted ApproXimation (SLAX) model,

introduced by Ahuja and Birge (2020), provided a very foundational understanding

of the complexity of framing an adaptive clinical trial as a Markov Decision Process

(MDP). On top of this, their work provides a practical solution for managing the

complexity of adaptive clinical trial designs. To start, the authors recognize the im-

practicality of solving large-scale MDPs exactly in an adaptive trial setting, due to the

curse of dimensionality [2]. Traditional adaptive trials often involve decision-making

processes that quickly become computationally difficult as the number of treatments,

patient outcomes, or trial periods increase. SLAX addresses this problem by em-

ploying approximation methods that make these computations manageable without

significantly sacrificing accuracy or performance.

At a high level, SLAX simplifies the complex decision-making process involved

in adaptive clinical trials through two key innovations. The first is that instead

of trying to exactly calculate the optimal decision for every possible scenario, SLAX

uses a grid-based interpolation approach. Specifically, the authors employ Barycentric

interpolation, which is a method that finds a polynomial that passes through a given

set of points [2]. In their context, this set of points is an approximated grid of the state

space, where they denote the state of the overarching trial system as a vector ht whose
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components represent the fraction of observed patient successes and failures for each

treatment (denoted by j ∈ J). This approximation is particularly useful due to the

impracticality of trying to determine every possible scenario in a trial, simply because

of computational burden. Under their MDP framework, this grid-based interpolation

estimates the approximate value function for scenarios that haven’t been explicitly

computed by interpolating between a small set of representative scenarios. With the

value function denoted by Vt, Ahuja and Birge define this interpolation as:

Ṽt(ht) =
d+1∑
i=1

λi
tṼt(h̃

i
t), (1.4)

where grid states h̃i
t define a simplex around the interpolated point, and weights λi

t

ensure convex combinations [2]. This novel approach significantly mitigates the com-

putational overhead typically encountered in large-scale MDPs. In the context of

adaptive trial designs, this greatly enables larger and more realistic trials to be sim-

ulated effectively. While interpolation introduces some approximation errors, SLAX

carefully manages through bounding. Namely, Ahuja and Birge define pjt as the un-

known (Beta distributed) probability of observing a success for treatment j ∈ J and

prove theoretical upper and lower bounds on this interpolated value. Their conserva-

tive lower bound is defined by a greedy policy that purely exploits current knowledge:

V lower
t = n(T − t)max

j∈J

{
E
[
pjt
∣∣αj

t , β
j
t

]}
, (1.5)

and a theoretical upper bound assuming perfect future knowledge:

V upper
t = n(T − t)E

[
max
j∈J
{pjt
∣∣αj

t , β
j
t }
]
. (1.6)

As such, the bounding ensures that the approximate value function remains plausible

and reflects realistic limits
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The second key innovation is that SLAX incorporates a novel ”learning compo-

nent” into the decision-making process. Clinical trials inherently face a trade-off

between exploiting current knowledge and exploring new knowledge when it comes

to patient assignment decisions. How do you decide whether to assign patients to

treatment arms you know are already effective, or assign to treatments that haven’t

been studied thoroughly yet? SLAX systematically balances these competing inter-

ests by explicitly integrating a learning incentive into the objective function of their

MDP setup. This means that SLAX not only seeks immediate patient success but

also strategically allocates resources to improve long-term knowledge about treatment

effectiveness.

Practically, SLAX employs simulation-based sampling, meaning it uses randomly

selected future outcomes rather than exhaustively evaluating every possible scenario.

This further reduces computational complexity, enabling the model to be retrospec-

tively tested on real-world trials. As such, the importance of SLAX lies in its prag-

matic approach: it takes a considerable step towards bridging the gap between rig-

orous theoretical adaptive trial methods and their practical application in real-world

clinical settings. By significantly reducing computational demands while preserv-

ing accuracy and adaptive flexibility, SLAX makes advanced Bayesian adaptive trial

methods more accessible and implementable. For our work, SLAX serves as a founda-

tion that supports further methodological developments, particularly those leveraging

machine learning and reinforcement learning techniques that we explore in this thesis.

1.2.6 Reinforcement Learning and Bandit Algorithms for Al-

location

Reinforcement learning (RL) provides a natural paradigm for adaptive decision-

making in trials. An RL agent aims to “learn” the optimal policy for assigning

treatments to patients through interaction, where each patient assignment and out-
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come can be seen as one trial of a sequential decision process. In particular, the

multi-armed bandit (MAB) problem is very closely related to response-adaptive ran-

domization. Under a pure exploration bandit setup, the goal is to identify the best

treatment arm with minimal regret. This resonates quite strongly with Phase II

and III trial objectives that are focused primarily on establishing efficacy and safety

against the current standard treatment [33]. Classical bandit algorithms like Thomp-

son Sampling (TS) and Upper Confidence Bound (UCB) methods have been proposed

to govern patient allocation.

Varatharajah and Berry (2022) employ such algorithms in their contextual-bandit-

based model, designed to dynamically optimize treatment assignment. The ”context”

in their setting is a patient-specific covariate, in which the authors frame the clinical

trial as an online decision-making problem. In doing so, each patient’s treatment

assignment is determined and based on their individual disease-related context. The

authors highlight that since contexts are observable (unlike treatment success prob-

abilities), they can set up a different context-free multi-arm bandit problem for each

context. Essentially, their approach learns a policy π(x) that maps a given patient

covariate profile x to a probability distribution over treatments [35]. They set up the

MAB problem and subsequently used TS and UCB algorithms to determine treatment

assignments aimed at maximizing outcomes. This kind of RL algorithm can be seen

as a machine learning-driven CARA design: it continuously updates a model (or value

function) to predict which treatment will be most effective for a given patient and

randomizes accordingly. Simulations in their work showed improved overall patient

outcomes compared to non-contextual bandit designs when applied retrospectively to

a full clinical trial dataset.

Most recently, researchers have proposed hybrid trial designs that aim to balance

regulatory compliance with real-world treatment optimization. One such proposal

is the Randomize First Augment Next (RFAN) framework introduced by Klein et
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al. (2025) [19]. RFAN structures clinical trials into two sequential phases: an ini-

tial randomized stage followed by an adaptive augmentation stage. The randomized

component mirrors a conventional RCT and is intended to satisfy regulatory require-

ments by generating unbiased treatment effect estimates across the trial population.

Once a sufficient baseline is established, the trial transitions to the augmentation

phase, where patient recruitment and treatment assignment are actively guided by

model-based uncertainty. Specifically, RFAN employs deep Bayesian active learning

to preferentially enroll patients whose covariates are expected to yield the greatest

information gain.

Their work is targeted particularly towards underrepresented or heterogeneous

subgroups, explicitly motivated by post-deployment performance metrics. To this

end, the authors introduce two forward-looking trial objectives. The first they define

as Post-Trial Mean Benefit (PTMB), which seeks to maximize the clinical utility of

the treatment policy following deployment. The second is Post-Trial Fairness (PTF),

which prioritizes equitable outcomes across sensitive subgroups. They importantly

highlight how ”currently trials are often designed to maximize the chances of ob-

taining regulatory approval, and employ recruiting practices that are often deficient

in terms of demographic diversity” [19]. While RFAN represents a meaningful and

virtuous advancement toward integrating machine learning into regulatory-confirmed

trial design, it is not without limitations. Its success hinges on the reliability of

model uncertainty estimates, which is an assumption that may be fragile in settings

with small sample sizes or high dimensionality. Further, the fixed structure of the

two-stage design risks underutilizing early patient data, especially if the randomized

stage is prolonged unnecessarily. Nevertheless, RFAN offers a promising blueprint

for hybrid adaptive designs that explicitly align trial conduct with both regulatory

standards.

The usage of deep RL is also gaining traction in adaptive clinical trial design,
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though it remains an emerging area of research. For instance, Matsuura et al. (2022)

propose a deep reinforcement learning-based allocation rule for dose-response Phase

II trials. In their framework, the RL agent seeks to directly optimize a chosen trial-

specific performance metric, such as statistical power, target dose accuracy, or mean

absolute error of the estimated dose-response curve [21]. This is done by employing

deep RL to learn an optimal allocation rule π∗. As their paper denotes, the expected

cumulative reward from being in state s and assigning dose k is defined as Qπ(s, k).

The overarching goal is to learn π∗ such that maxk Qπ(s, k) is optimized for every

state s. Because their state space comprises dose-specific means, variances, and al-

location proportions, it is continuous and high-dimensional, meaning exact dynamic

programming is infeasible. Instead, the policy π(k|s) is parameterized by a deep neu-

ral network (DNN), and trained via Proximal Policy Optimization (PPO) [21]. PPO

is a policy gradient method known for its stability and performance. Mathematically,

the policy is computed as a softmax over neural outputs:

π(k|s) = exp(uk)∑K
k′=1 exp(uk′)

, (1.7)

where uk is computed from a two-layer neural network with ReLU activations:

z
(1)
j = f

(
α
(1)
j +

∑
i

β
(1)
ji si

)
, z

(2)
j = f

(
α
(2)
j +

J∑
j′=1

β
(2)
jj′ z

(1)
j′

)
,

uk = α
(3)
k +

J∑
j′=1

β
(3)
kj′z

(2)
j′ . (1.8)

In setting it up this way, they enable the agent to interact with a simulated clinical

trial environment by repeatedly sampling dose-response outcomes. The agent up-

dates its policy to maximize expected returns under the chosen performance metric,

and their simulation results demonstrate that agent-learned policies consistently out-

perform classical and asymptotic-optimal designs (e.g., D-optimal, TD-optimal). We
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importantly highlight here that their findings indicate the applicability of deep RL

within a clinical trial context [21]. Namely, in this thesis, we aim to explore how deep

RL can flexibly learn efficient and robust allocation strategies tailored to diverse trial

objectives and constraints.

1.2.7 Covariate Balance & Robustness of Design

As mentioned when discussing CARA methods, covariate balance aims to ensure

treatment and control groups are comparable across critical baseline characteristics,

such as age, gender, disease severity, or biomarkers. Without this balance, differences

between groups can confound treatment effect estimates, undermining the trial’s in-

ternal validity. Robustness is another key consideration in any experimental design.

In a trial setting, robustness aims to safeguard against the unpredictability of pa-

tient outcomes to ensure the trial’s conclusions remain valid under a wide range of

potential scenarios. Clinical trials have inherently small sample sizes, high-stakes

decision-making, and ethical constraints, which all amplify the need for precise and

trustworthy experimental designs. By addressing both covariate balance and ro-

bustness, trial designs can simultaneously improve statistical efficiency and maintain

fairness, ensuring that patient outcomes and scientific insights are not compromised.

Harshaw, Sävje, Spielman, and Zhang introduce a novel and near-optimal ap-

proach to the balance-robustness trade-off of experimental design: the Gram-Schmidt

Walk (GSW). The underlying motivation for this design lies in the shortcomings of

fully randomized designs. Namely, the authors highlight that randomization can

worsen the comparability of treatment groups as it introduces a degree of unpre-

dictability in the assignment process [16]. This can result in imbalances in key base-

line covariates between groups, in which experimenters retrospectively wish they re-

randomized groups subsequent to the results of a given experiment. Harshaw and

colleagues build on the principles of discrepancy theory, particularly results from
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Banaszczyk (1998) and Bansal et al. (2019). These works tackled the problem of

partitioning high-dimensional vectors into subsets with low discrepancy, achieving

bounds that approach near-random partitions under specific conditions. The GSW

design adapts these ideas to construct experimental designs that balance covariates

while maintaining randomness, ensuring unbiased treatment effect estimates.

The GSW design is notably applicable in fields such as social sciences, machine

learning, and resource allocation. Balancing trade-offs between structure and random-

ness is critical in these areas where balance or deterministic optimization is prioritized

over the interplay of randomness and robustness. In contrast, the covariate matrix

within a clinical trial must address unique challenges such as patient heterogeneity,

ethical fairness, and regulatory requirements. Hence, blending balance and random-

ness to ensure robust causal inferences takes precedence. Research on the adaptation

of the GSW to clinical trials currently does not exist. This is namely due to the

intermittency of subject enrollment in many trials, as well as the extreme lack of

standardization in design.

In this thesis, we initially explored incorporating the GSW design into an adap-

tive clinical trial setting. We note that the GSW could prove helpful even for simply

balancing initial patient assignments at the start of a trial. Ultimately, the lack of

real covariate-level patient data led us to shift away from incorporating this design,

however is included in our future work section as a potential avenue for further im-

provement of the model presented in the chapters to come.
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Chapter 2

Markov Decision Process

Framework

This chapter establishes the setup, assumptions, and computational framework in-

volved in modeling a two-arm clinical trial as a Markov Decision Process (MDP).

The central assumptions in this framework are that patient response is binary and

the trial is segmented into T discrete time steps (also referred to as intervention steps

or decision points). That is, at each time step, a patient either achieves clinical suc-

cess or does not, based on a pre-specified threshold. In practice, this threshold would

be the primary endpoint established by the drug company running the trial, before

the trial starting. The framework further assumes that the trial has a fixed number of

subjects N per time step and that patient outcomes are evaluated at the end of each

discrete interval. By doing so, this setting would then, in practice, establish set times

where the experimenter could reallocate treatments or stop the trial prematurely. In

the context of the model established in this chapter, this setting provides a defined

set of periods that the model is run on, enabling adaptive decision-making as the trial

progresses. Rather than focusing on traditional metrics such as the Average Treat-

ment Effect (ATE), our approach concentrates on dynamically updating the posterior
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probabilities of treatment success for each arm. Focusing on posteriors facilitates a

direct comparison of the success probabilities between the experimental and control

treatments at each discrete step of the trial. As such, this forms the basis for adaptive

patient allocation until the conclusion of the trial.

2.1 Adaptive Model Setup

2.1.1 Trial Structure and Distribution Assumptions

Consistent with existing Bayesian-adaptive models, we reiterate that the clinical trial

setting has a fixed number of patients N allocated for each discrete time step. In

terms of the treatments, we assume a clinical setting with two treatment arms (ex-

perimental treatment (E) and control (C)) that are statistically independent with

no serial correlation in treatment effects. Hence, the probability distributions for

treatment success are updated separately based on the observed patient responses for

each arm, where such responses are independent events conditional on the current es-

timated success probability [2]. As mentioned, we consider each outcome yi as binary,

and defined as follows:

yi =


1, if patient i achieves clinical success,

0, otherwise.

Many existing adaptive frameworks, such as the SLAX approach employed by Ahuja

and Birge (2020), assume that patients are independent and identically distributed

(i.i.d.) [2]. We explored an approach that tried to incorporate patient covariate in-

formation into the state which would thereby induce a structured dependency among

patients in relation to their baseline characteristics. The idea was that relaxing the

i.i.d. assumption and explicitly considering covariates would better reflect the hetero-
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geneity observed in a clinical setting. However, this complicates the posterior update

scheme of the model, because the standard Beta-Bernoulli model, discussed in this

section, relies on a conjugate relationship where the success probability is assumed to

be constant across patients within each treatment arm. Hence, effective incorporation

of covariates has to be done with a different update mechanism that integrates the

effect of covariates on the outcome. Covariate-adjusted response-adaptive (CARA)

randomization procedures are relatively popular and often rely on regression-based

approaches [26]. These methods naturally tend to be more assumption-heavy and

can introduce additional errors. Another way to go about incorporating covariates is

through the usage of a contextual-bandit-based approach where the ”context” could

be some disease-related characteristics of a given patient that is then used to de-

termine treatment assignment. Varatharajah & Berry (2022) incorporate covariates

(contexts) into their approach formulating a different context-free multi-arm bandit

(MAB) problem for each covariate. In doing so, their approach sequentially allocates

new patients to treatment arms based on the standard MAB problem that only looks

at past patients with a specific covariate [35]. This type of approach is less applicable

in an MDP setting because it does not capture the sequential dependency inherent in

the trial’s dynamics. A contextual bandit model addresses decision-making problems

by maximizing an immediate reward function E[r(s, a)] for a given context without

considering future consequences, whereas an MDP is governed by the Bellman equa-

tion which encapsulates the cumulative, discounted future rewards. All of this to say,

the i.i.d. patient assumption is held in the model.

The last assumption worth mentioning is that the trial itself is assumed to have

planned interventions throughout. By discretizing the trial, we enable fixed periods of

analysis on observed treatment effects as well as altering treatment assignments based

on these observed factors. To put this formally, we let T be the total trial length, and

assume interventions occur at pre-determined time steps t ∈ [0, T ]. At each decision
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point, the success rates for each treatment arm, p
(E)
t ∈ [0, 1] and p

(C)
t ∈ [0, 1], are

modeled as Beta distributed random variables as follows:

p
(E)
t ∼ Beta(α

(E)
t , β

(E)
t ), p

(C)
t ∼ Beta(α

(C)
t , β

(C)
t ).

The overall true success rates for the two treatment arms are unknown at the begin-

ning of the trial. As such, at t = 0, we assume the treatment and control arm success

rates have starting prior distributions (α
(E)
0 , β

(E)
0 ) and (α

(C)
0 , β

(C)
0 ), which, particularly

in later-stage trials such as Phase III, may be informed by previous trials or other

known data points. At each subsequent time step t, these parameters are recursively

updated as new patient outcomes are observed, forming the posterior distributions

for p
(E)
t and p

(C)
t .

After the assignment of patients to either arm E or C for a given time step t, we

realize each patient’s binary outcome and can model each yi ∈ {0, 1} as a Bernoulli

distributed random variable with success probability based on their treatment arm:

yi ∼ Bernoulli(p
(E)
t ) if assigned to E, yi ∼ Bernoulli(p

(C)
t ) if assigned to C

Following this, we can denote y
(E)
t = (y

(E)
1 , y

(E)
2 , . . . , y

(E)
nE ) and y

(C)
t = (y

(C)
1 , y

(C)
2 , . . . , y

(C)
nC )

as vectors of observed outcomes for patients assigned to the experimental treatment

and control arms respectively.

As a result, we observe the overall trial dynamics at any given timestep t ∈ [0, T ],

and denote these dynamics as follows:

• n
(E)
t ∈ [0, N ]: the total number of patients assigned to the experimental

treatment arm at time t

• r
(E)
t ∈ [0, N ]: the total number of observed successes in the experimental

treatment arm at time t
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• n
(C)
t ∈ [0, N ]: the total number of patients assigned to the control arm at

time t

• r
(C)
t ∈ [0, N ]: the total number of observed successes in the control arm

at time t

Hence, we see that the total number of observed successes in each arm at a given time

step t can be expressed as the dot product of a ones vector with the corresponding

treatment outcome vector:

r
(E)
t = 1⊤yE, r

(C)
t = 1⊤yC

where 1 is a vector of ones of appropriate dimension. In doing so, this formulation

allows for a compact representation of cumulative successes and facilitates efficient

updates as new patient outcomes are observed. Further, since we define yi as Bernoulli

distributed, it follows that r
(E)
t and r

(C)
t follow binomial distributions:

r
(E)
t ∼ Binomial(n

(E)
t , p

(E)
t ), r

(C)
t ∼ Binomial(n

(C)
t , p

(C)
t )

A very notable advantage of defining r
(E)
t and r

(C)
t in this way is that the Beta

distribution serves as a conjugate prior to the Binomial likelihood. Thus, this en-

ables efficient Bayesian updating of success probabilities. So what follows is that the

posteriors for the Beta distributed success rates can be updated recursively as such:

(p
(E)
t | r(E)

t ) ∼ Beta(α
(E)
t−1 + r

(E)
t , β

(E)
t−1 + n

(E)
t − r

(E)
t ) (2.1)

(p
(C)
t | r(C)

t ) ∼ Beta(α
(C)
t−1 + r

(C)
t , β

(C)
t−1 + n

(C)
t − r

(C)
t ) (2.2)

The proof of this update rule is outlined in Appendix C.1, and for completeness, it is

worth noting that this update rule can be applied sequentially for individual patient

responses. This is similarly done by exploiting the Beta-Bernoulli conjugacy, which
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naturally arises from the direct relationship between Bernoulli trials and the Binomial

likelihood.

2.1.2 Hypothesis Testing Framework

Ubiquitously used in randomized experiment settings is a hypothesis testing frame-

work. In the context of clinical trials, this is ultimately used to determine whether

the observed data provide sufficient evidence to reject a null hypothesis in favor of an

alternative hypothesis. In terms of variables already defined, this is typically analyzed

via either a one-tailed or two-tailed test as follows:

• One-tailed hypothesis test: H0 : pE ≤ pC , H1 : pE > pC

• Two-tailed hypothesis test: H0 : pE = pC , H1 : pE ̸= pC

It is standard practice for the experimenter to specify a significance level α (the

Type I error rate) and a desired power 1 − β (the probability of correctly rejecting

H0 when it is false). In later-stage trials (e.g., Phase III), α is typically set at 0.05 or

0.01 [28].

Power is arguably of greater importance, and is defined as the probability of

correctly rejecting the null hypothesis H0 when it is indeed false. Illustratively, power

is the probability of finding significant results (i.e., treatment effect) if a real effect

actually exists [30]. Hence, achieving certain powering of a trial involves calculating

the required sample size based on the expected effect size as well as the level of

significance desired. Namely, it is about finding a balance between having enough

patients in the overall sample to reliably detect a meaningful effect, while minimizing

unnecessary recruitment and resource usage. That being said, power is a much harder

parameter to converge on compared to the significance level, as it has a strong reliance

on the trial’s choice of primary endpoint(s). For treatments in development, one of

the main objectives is to develop a novel and more efficacious treatment to what
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already exists on the market. As such, intervention methods, disease targets, response

metrics, etc., are highly variable across different trials, making standardization of

primary endpoint decisions almost impossible.

While the model established in the subsequent sections leverages a Bayesian adap-

tive framework, the traditional metrics of Type I error rate and power continue to

serve as essential benchmarks. It is important to clarify how these metrics relate to

our implementation. Firstly, the overall MDP-based adaptive trial model that we set

up is driven by a reinforcement learning (RL) algorithm that dynamically updates

the posterior distributions of the treatment success probabilities and makes patient

allocation decisions to maximize cumulative rewards. In this framework, decisions

are made sequentially based on the evolving state of the trial rather than through

an explicit classical hypothesis test at each interim stage. Secondly, even though we

don’t explicitly embed hypothesis testing within the decision rules, the design can

theoretically still be evaluated from a regulatory perspective. To do this, simulation

studies are conducted outside the core RL algorithm. By simulating many instances

of the adaptive trial under different scenarios (i.e., under a specific null and alter-

native hypothesis) one can estimate the operating characteristics of the design. For

example, for the type I error probability, we simulate a large number of trials under

the null hypothesis and apply a pre-specified decision rule (such as stopping the trial

when the posterior probability that pE > pC exceeds a set threshold). With this, the

proportion of simulated trials that lead to a false positive decision (incorrect rejec-

tion of H0) provides an estimate of the overall Type I error rate. Similarly, in order

to estimate power we can run simulations under the alternative hypothesis with a

true treatment effect, and observe the proportion of simulated trials that correctly

lead to a decision in favor of the experimental treatment estimates the trial’s power.

This simulation-based assessment is in line with the FDA’s recommendations [10] for

complex adaptive designs, where the analytical derivation of the distribution of test
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statistics can be intractable. The third and last note worth mentioning is that in

practice, one could retrospectively analyze the trial outcomes (such as the final pos-

terior distributions or cumulative success differences) and perform hypothesis tests to

calculate Type I error and power estimates.

2.2 MDP Framework

Now that we have most of the trial mathematically defined, we introduce the finite-

horizon MDP setup [31]. It’s necessary to understand and define the dynamics of

MDPs before specifically applying the framework to clinical trial design.

Given a finite state space X = {x1, x2, . . . , xM}, M ∈ N∗, and a finite action space

A = {a1, a2, . . . , aK}, K ∈ N∗, the MDP dynamics are as follows:

• ∀t ∈ [0, T ] we let xt ∈ X and at ∈ A denote the state at time t and action

chosen at time t respectively.

• We define the transition probability (i.e. the probability of transitioning from

state xt ∈ X to state xt+1 ∈ X ) by: P (xt, xt+1, at) = P(xt+1 = y|xt, at).

• Hence, with probability P (xt, xt+1, at) the state goes from xt ∈ X to xt+1 ∈ X

with reward R(xt, xt+1, at) obtained.

2.2.1 State Space (X ∈ R7)

As mentioned in the setup of the trial structure, the framework being considered

is a trial discretized by planned intervention periods. This setup fits well within a

finite horizon MDP framework where, at each discrete time step (i.e., decision point)

t, immediately after observing the outcomes for all N patients in a given cohort,

the state of the trial captures our current belief about treatment outcomes and the
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overall trial progress. By employing a reinforcement learning agent — discussed

in the next chapter — we leverage a rich state representation that includes both

the basic Beta parameters and derived metrics that provide additional context for

decision-making. This comprehensive, continuous state space is designed to capture

the innate variability of clinical trials. As such, at time t, the state is defined as:

xt ∈ X =
(
tnorm, p

(E)
t , p

(C)
t , σ

(E)
t , σ

(C)
t , ηt, ρt

)
,

where:

• tnorm = t
T
∈ [0, 1] is the normalized time step, indicating how far the trial has

progressed.

• p
(E)
t =

α
(E)
t

α
(E)
t +β

(E)
t

is the current posterior mean of the experimental treatment’s

success probability. Beta parameter updating was previously discussed, and

this metric is derived from the Beta distribution, serving as an updated esti-

mate based on accumulated patient outcomes. This is incorporated into the

state space as it provides a picture of how effective the experimental treatment

appears to be up to time t.

• p
(C)
t =

α
(C)
t

α
(C)
t +β

(C)
t

is similarly the current posterior mean of the control treatment’s

success probability, offering a direct comparison to the experimental arm. As

such, both of these posterior means provide some color to which treatment might

yield better results, thereby guiding allocation decisions towards the treatment

with higher observed efficacy.

• σ
(E)
t =

√
α
(E)
t ·β(E)

t(
α
(E)
t +β

(E)
t

)2
·
(
α
(E)
t +β

(E)
t +1

) is the standard deviation of the experimental

success rate, giving a measure of uncertainty in the estimated success proba-

bility for this arm. This is included to compliment the above posterior means,

where naturally a higher σ
(E)
t helps indicate that the experimental treatment’s
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performance is less certain, suggesting more exploration might be needed.

• σ
(C)
t =

√
α
(C)
t ·β(C)

t(
α
(C)
t +β

(C)
t

)2
·
(
α
(C)
t +β

(C)
t +1

) is the standard deviation of the control suc-

cess rate, similarly giving a measure of uncertainty in the estimated success

probability for this arm. Analogous to σ
(E)
t , this term helps provide clarity into

how reliable the control estimates are when compared to the experimental treat-

ment arm, crucial when considering shifts in future allocations. As such, both

σ
(E)
t and σ

(C)
t are measures that help in the exploration-exploitation trade-off

when determining both the validity of current estimates and the certainty of

future allocation decisions.

• ηt = P(p(E)
t > p

(C)
t ) =

∫ 1

0
f
(E)
t (x)F

(C)
t (x) dx is the probability that the experi-

mental treatment produces a higher success rate than the control. Rigorously,

this probability is:

P(p(E)
t > p

(C)
t ) =

∫ 1

0

xα
(E)
t −1(1− x)β

(E)
t −1

Beta(α
(E)
t , β

(E)
t )

(∫ x

0

sα
(C)
t −1(1− s)β

(C)
t −1

Beta(α
(C)
t , β

(C)
t )

ds

)
dx.

By integrating over the experimental treatment’s PDF weighted by the control’s

CDF, this value encapsulates the overall confidence in the superiority of the

experimental arm. As such, this component of the state aims to provide a

probabilistic comparison that integrates the entire distributions, not just their

means.

• ρt =
A

(E)
t

A
(E)
t +A

(C)
t

=
∑t

s=1 n
(E)
s∑t

s=1

(
n
(E)
s +n

(C)
s

) , where we define A
(E)
t and A

(C)
t as the cumu-

lative number of patients assigned to the experimental treatment and control

arms, respectively, up to time t. As such, ρt aims to capture the historic allo-

cation ratio, i.e., the proportion of all patients (across every cohort up to time

t) that have been assigned to the experimental treatment arm. By reflecting

on how balanced (or unbalanced) past allocation decisions have been, ρt helps
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when assessing any needs to correct for potential over- or under-allocation to a

particular treatment arm. This is a key consideration within a clinical trial, as

highly skewed allocations can negatively impact overall ethical and statistical

objectives.

To briefly summarize, the goal of defining the state space as above is to offer the RL

agent a comprehensive snapshot of the trial’s status. It captures the clinical trial’s

progress via a normalized time indicator while concurrently summarizing our current

beliefs about the treatment outcomes through both the posterior means and uncer-

tainties derived from the Beta distributions. The probability that the experimental

treatment is superior, ηt, gives a holistic comparison of the two treatment arms that

goes beyond merely comparing point estimates. Then lastly, the historical allocation

ratio succinctly reflects the trial’s past patient assignments, essentially contextual-

izing the degree of exploration or exploitation that has been applied to each arm.

In the clinical trial setting, these elements are structured to work together to help

balance patient benefit against the necessity to learn from ongoing data.

In terms of justifying the MDP validity of the state space defined above, first note

that a state xt is Markov if and only if P(xt+1 | xt) = P(xt+1 | x1, . . . , xt) is satisfied

[31]. Thus, the state representation presented above satisfies the Markov property by

design. All relevant historical information — encoded in the Beta parameters and the

cumulative allocation ratio — is summarized in the current state xt. Consequently,

given xt, the future evolution of the trial (i.e., the next state and received reward)

depends only on the current state and the chosen allocation action, not on the detailed

sequence of past events. This key Markov property ensures that the environment’s

dynamics are memoryless, meaning the next state can be determined solely based on

the current state. This is essential for applying standard RL algorithms, which assume

that the current state contains all information needed to predict future outcomes [31].
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2.2.2 Action Space (A)

The action space is defined on a full-cohort basis, as a continuous value at ∈ [0, 1].

This value represents the proportion of the total number of patients in the cohort N

to be allocated to the experimental treatment arm. Specifically, the action space is

defined as:

A = {a ∈ R | 0 ≤ a ≤ 1}.

This proportion is then mapped to a discrete allocation for the experimental treat-

ment. We are able to define a continuous action space because the RL agent used is

designed to output a continuous action. This allows for fine-grained and smooth inter-

polation over the set of possible allocation ratios. Such a design is especially beneficial

in the clinical trial setting with a large and continuous decision space, as it enables

the agent to explore subtle variations in policy without the limitations imposed by

a discretized action space. Although we initially considered a discretized set of per-

centage allocations (e.g., 25%, 50%, 75%, etc.) mainly to reduce the computational

burden, we transitioned to a continuous action space for two main reasons:

1. The RL algorithm we employ (a variant of Soft Actor-Critic) naturally handles

a continuous action space.

2. Restricting the possible allocations to a fixed set hindered optimal decision-

making and the policy’s overall performance.

To illustrate the action space in the context of the trial, at time t, after observing

the N patient responses from the previous cohort (assigned at time t− 1), the agent

selects an action at. This action is interpreted as the proportion of N patients to

allocate to the experimental arm. Specifically, the number of patients allocated to

the experimental arm is:

n
(E)
t = at ·N,
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and accordingly, n
(C)
t = N − n

(E)
t patients are allocated to the control arm. These

allocations are implemented at time t, and the cycle continues with new outcome

observations at time t+1. Naturally, this observation-allocation cycle continues until

the conclusion of the trial at time T .

The percentage-based formulation decouples the policy decision from the absolute

cohort size, yielding several important advantages. First, it enables scalability, in the

sense that the same decision-making process can be applied regardless of cohort sizeN

since decisions are expressed in relative terms. Second, it enables smoother optimiza-

tion, meaning small changes in the action cause only small, incremental adjustments

in the number of patients allocated to the treatment arms. We note this, as the pre-

viously defined discrete action space meant that if a different allocation percentage

was selected from the set (such as 25%, 50%, and 75% as mentioned before), then the

allocations would jump significantly, especially as N grew. This ”smooth” aspect is

namely important as it is conducive to efficient policy optimization through gradient-

based methods, facilitating precise adjustment of the exploration-exploitation trade-

off. Third and last note here, the continuous definition aids with interpretability, as

the output of the RL agent can be directly interpreted as a proportion. Hence, doing

so makes it easier to understand and communicate the precise allocation strategy.

2.2.3 Transition Dynamics

At each discrete time step t (with t = 1, 2, . . . , T for a finite-horizon trial), the overall

state of the trial is represented by

xt =
(
tnorm, p

(E)
t , p

(C)
t , σ

(E)
t , σ

(C)
t , ηt, ρt

)
,

which we defined in the state subsection above.

The transition dynamics under our MDP framework proceed in the following
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sequential steps:

1. Action Mapping to Patient Allocation: At time t, a continuous action

at ∈ [0, 1] is chosen. This action represents the proportion of the current cohort (of

size N) to be assigned to the experimental arm. We define the discrete number of

patients allocated to the experimental arm by

n
(E)
t =

⌊
at ·N +

1

2

⌋
,

and the resulting allocation for the control arm is:

n
(C)
t = N − n

(E)
t .

We then trivially update the cumulative allocation histories A
(E)
t and A

(C)
t as follows:

A
(E)
t = A

(E)
t−1 + n

(E)
t , A

(C)
t = A

(C)
t−1 + n

(C)
t .

For completeness, note that allocation histories are initialized to 0 at the start of the

trial: A
(E)
0 = A

(C)
0 = 0.

2. Stochastic Outcome Realization: In the model, outcomes are realized in one

of three ways:

• True Probabilities are Established and Used for Outcome Generation

and Benchmarking: In this setting, we assume there exist some underlying

true success probabilities for both treatment arms that are unknown to the

decision-maker (and in practice to everyone) until the trial is completed at time

T . These true probabilities are used as the success probabilities for running

independent Bernoulli trials to simulate outcomes. Conveniently, this allows us

to establish an upper bound for the optimal allocation strategy, where we estab-
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lish an ”oracle” strategy that knows these true success probabilities throughout

the trial and allocates patients accordingly.

• True Probabilities are Fully Unknown: In this second setting, we resort

to using our estimates of success probabilities to generate outcomes for the

independent Bernoulli trials. Specifically, we use the posterior means calculated

from the Beta distributions of each treatment arm as plug-in estimates for the

Bernoulli likelihood.

• Real Outcomes from Clinical Trial: In this last case, we establish the set-

ting where patient outcomes are actually observed. This setting is very idealis-

tic, as running a full clinical trial is unfortunately out of the scope of this thesis,

however, it’s worth noting how this model would theoretically update in this

scenario. Inherently, if we are able to observe actual outcomes of treatments,

then we would not need to use independent Bernoulli to generate outcomes. The

posteriors would simply update based on these observed outcomes, enabling al-

location decisions to be made based on the updated posteriors following the

realized outcomes.

In the second case where we don’t have the underlying true probability for generating

outcomes, the n
(E)
t patients assigned to the experimental treatment arm in period

t generate the outcomes using Bernoulli trials as explained. Namely, the success

probability used for the experimental treatment arm is the previous period’s posterior,

p
(E)
t−1, and similarly p

(C)
t−1 for the n

(C)
t patients in the control arm. with p

(C)
t−1. Note that

here at time t, these probabilities are estimated by the posteriors at t− 1:

p
(E)
t−1 =

α
(E)
t−1

α
(E)
t−1 + β

(E)
t−1

, p
(C)
t−1 =

α
(C)
t−1

α
(C)
t−1 + β

(C)
t−1

.
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As such, we have that r
(E)
t and r

(C)
t denote the number of successes observed in the

experimental and control arms, respectively. Thus,

r
(E)
t ∼ Binomial

(
n
(E)
t , p

(E)
t−1

)
, r

(C)
t ∼ Binomial

(
n
(C)
t , p

(C)
t−1

)
.

These random variables capture the trial’s inherent outcome variability.

3. Bayesian Update of Latent Parameters: Using the conjugate relationship

between the Beta distribution and the Binomial likelihood, we know the latent pa-

rameters are updated as follows:

α
(E)
t = α

(E)
t−1 + r

(E)
t , β

(E)
t = β

(E)
t−1 + n

(E)
t − r

(E)
t ,

α
(C)
t = α

(C)
t−1 + r

(C)
t , β

(C)
t = β

(C)
t−1 + n

(C)
t − r

(C)
t .

These updated parameters now represent the new posterior distributions for the treat-

ment success probabilities.

4. State Recalculation: With the updated Beta parameters and cumulative al-

location histories, the state is recalculated for the next decision time step of the trial

(t+ 1) as:

• Updated Posterior Means:

p
(E)
t =

α
(E)
t

α
(E)
t + β

(E)
t

, p
(C)
t =

α
(C)
t

α
(C)
t + β

(C)
t

.

• Updated Posterior Standard Deviations (Uncertainties):

σ
(E)
t =

√√√√√ α
(E)
t β

(E)
t(

α
(E)
t + β

(E)
t

)2 (
α
(E)
t + β

(E)
t + 1

) ,
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σ
(C)
t =

√√√√√ α
(C)
t β

(C)
t(

α
(C)
t + β

(C)
t

)2 (
α
(C)
t + β

(C)
t + 1

) .
• Recalculated Probability of Superiority:

ηt = P
(
p
(E)
t > p

(C)
t

)
=

∫ 1

0

f
(E)
t (x)F

(C)
t (x) dx,

with f
(E)
t (x) and F

(C)
t (x) defined as before.

• Updated Allocation Ratio:

ρt =
A

(E)
t

A
(E)
t + A

(C)
t

.

• Updated Normalized Time:

tnorm =
t

T

5. Stopping Conditions: We lastly highlight the termination step, noting that

the transition process repeats at each decision step until t = T . Hence, at termination,

the final state is:

xT =
(
1, p

(E)
T , p

(C)
T , σ

(E)
T , σ

(C)
T , ηT , ρT

)
.

Formally, if we denote by Palloc(n
(E)
t | at) the deterministic probability mass function

corresponding to the mapping
⌊
at ·N + 1

2

⌋
, and by Pobs(r

(E)
t , r

(C)
t | xt−1, n

(E)
t ) the

joint probability of observing outcomes r
(E)
t and r

(C)
t given the previous state and

patient counts, then the overall transition kernel is given by the following:

P(xt | xt−1, at) = Palloc(n
(E)
t | at) · Pobs(r

(E)
t , r

(C)
t | xt−1, n

(E)
t ) .

This product factorization reflects the fact that (1) given the action at, the alloca-
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tion to the experimental arm is deterministically fixed, and (2) once patient counts

are assigned, the observations are generated stochastically via independent Binomial

processes. Hence, the overall one-step state update can be thought of as being com-

posed of a deterministic mapping (from action to patient allocation) followed by a

stochastic outcome generation process, which together updates the state according to

the Bayesian updating rules.

To mention the Markov property in our MDP framework, we importantly highlight

that the state vector xt fully encapsulates all the necessary historical information

required to predict future outcomes. In our formulation, the state at time t of each

component is derived from all previous outcomes and allocations. Specifically:

• The posterior means p
(E)
t and p

(C)
t are computed from the Beta parameters α

(E)
t ,

β
(E)
t , α

(C)
t , and β

(C)
t which have been updated using all past observed outcomes.

• The uncertainties σ
(E)
t and σ

(C)
t provide a measure of the current estimation

precision based on the updated Beta parameters.

• The probability of superiority ηt is derived from the full distributions of p
(E)
t

and p
(C)
t .

• The cumulative allocation ratio ρt summarizes all past allocation decisions.

Because these state components are updated at every time step using the outcomes

and decisions from the previous step, the updated state contains all relevant infor-

mation from the past. Formally, the transition probability

P(xt | xt−1, at)

captures the entire effect of the history through xt−1. Explicitly, once the state xt−1

is known, the distribution over xt depends solely on the current action at and the

probabilistic mechanism for outcome generation and Bayesian updating. As such,
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our state representation satisfies the following Markov property:

P(xt+1 | xt, at) = P(xt+1 | x1, x2, . . . , xt, at),

meaning that the future state of the system depends only on the present state (and

the current action) and not directly on the sequence of states and actions that pre-

ceded it. This ”memoryless” characteristic is essential for the standard application of

reinforcement learning algorithms, ensuring that all information necessary for optimal

decision-making is contained in xt.

2.2.4 Reward Function (R(xt, at, xt+1))

The reward at time step t is designed to capture not only the immediate benefit in

patient outcomes but also the value of information acquired and the degree to which

the allocation decisions promote balanced exploration of the treatments. Formally,

we define the reward function as:

Rt = Rimmediate + λTVD ·Rinformation + λexplore ·Rexplore, (2.3)

where:

• Rimmediate is the immediate reward, equal to the total number of clinical successes

observed in the current cohort.

• Rinformation quantifies the information gained through a change in the separa-

tion of the success probability posteriors, as measured by the Total Variation

Distance (TVD).

• Rexplore is an exploration bonus that incentivizes balanced allocations between

treatment arms, with a decaying weight as the trial progresses.
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• λTVD and λexplore are hyperparameters that regulate the trade-off between im-

mediate outcomes, information gathering, and exploration.

Immediate Reward: We define the immediate reward as the total number of

observed patient successes at time t. If we denote

r
(E)
t = 1⊤y

(E)
t and r

(C)
t = 1⊤y

(C)
t

as the observed successes in the experimental and control arms respectively, then:

Rimmediate = r
(E)
t + r

(C)
t .

This term directly measures patient benefit and is analogous to the clinical outcome

of interest. It forms the core objective of any clinical trial: to maximize the number

of patients receiving effective treatment.

Information Gain Bonus: To quantify the value of information gathered between

decision points, we use the Total Variation Distance (TVD) between the Beta pos-

terior distributions of the two treatment arms. The TVD between two probability

distributions is a canonical measure of dissimilarity that plays an essential role in

many areas of probability, statistics, and machine learning [6]. For two distributions

P and Q defined on a common measurable space with density functions p(x) and

q(x), the TV distance is defined as:

TVD(P,Q) =
1

2

∫
|p(x)− q(x)| dx.

38



Alternatively, it can be expressed as the maximum difference between the probabilities

assigned to any measurable set:

TVD(P,Q) = max
S⊂X
|P (S)−Q(S)| .

This formulation highlights its physical interpretation: it represents the maximum

bias that can be induced by using one distribution instead of the other over any event

S. In this sense, TVD tells us the worst-case error one might incur if decisions were

based on a distribution that differs from the true one.

TVD is especially attractive due to several mathematically desirable characteris-

tics, highlighted by Bhattacharyya et al. (2022):

1. Boundedness: TVD is bounded between 0 and 1. This means that for any

two probability distributions, TVD(P,Q) ∈ [0, 1]. A TVD of 0 indicates iden-

tical distributions, while a TVD of 1 (or very close to 1) indicates complete

dissimilarity.

2. Metric Properties: TVD is a proper metric on the space of probability distri-

butions. It satisfies the usual metric axioms: non-negativity, symmetry, triangle

inequality, and TVD(P,Q) = 0 if and only if P = Q.

3. Invariance under Bijections: TVD remains unchanged under any bijective

transformation of the sample space. That is, if f is a bijection, then:

TVD(P,Q) = TVD(P ◦ f−1, Q ◦ f−1).

This invariance property is very useful when the underlying space is trans-

formed, ensuring that the measure of dissimilarity does not depend on the par-

ticular representation of the data.

In our model, TVD is used to quantify the difference between the posterior distri-
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butions of the experimental and control treatment arms. Consider the two Beta

distributions:

PE(x) =
xαE−1(1− x)βE−1

Beta(αE, βE)
and PC(x) =

xαC−1(1− x)βC−1

Beta(αC , βC)
,

which represent our beliefs about the success probabilities for arms E and C, respec-

tively. The TVD between these two distributions is then given by:

TVD(PE, PC) =
1

2

∫ 1

0

|PE(x)− PC(x)| dx.

In the context of the adaptive trial, we are less interested in the absolute TVD at each

time step and more in its change between time steps. If new patient outcomes cause

the TVD to increase, it indicates that the posterior distributions are diverging from

one another; put differently, the new data have increased our ability to distinguish

between the efficacy of the experimental and control arms. Formally, we define the

information gain component of the reward as:

Rinformation = TVDnew − TVDold,

where a positive difference suggests that the experimenter has acquired informative

evidence that could guide future allocation decisions.

The selection of TVD to measure information gain is motivated by several factors:

• Physical Interpretation: TVD quantifies the maximum possible difference

in probabilities across all events. In our clinical trial context, it provides a

worst-case measure of bias between the two treatment distributions. If TVD

increases, it means there is a stronger signal in favor of one treatment over the

other.

• Mathematical Robustness: The TV distance is a metric, ensuring that our
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measurement of information gain is both reliable and consistent. Its bounded

nature guarantees that the contribution to the reward from the TVD term is

well-controlled.

• Invariance and Applicability: TVD’s invariance under bijections implies

that its value is independent of how the outcome space is represented. This is

particularly useful when working with continuous Beta distributions, as their

functional forms remain comparable under natural transformations.

In practice, to compute this integral numerically, we discretize the interval [0, 1] into

n evenly spaced grid points {xi}ni=1 with ∆x = 1/n, thereby approximating:

TVD(PE, PC) ≈
1

2

n∑
i=1

|pE(xi)− pC(xi)|∆x.

Let TVDt−1 denote the TVD at the previous decision step and TVDt the TVD after

updating the posteriors at time t. The information gain is then computed as:

Rinformation = TVDt − TVDt−1.

A positive value for Rinformation indicates that the new data have increased the sepa-

ration between the experimental and control distributions, implying that additional

information has been acquired about the relative efficacy of the treatments. This

bonus component is critical for steering the agent toward decisions that favor learn-

ing—thus improving future allocation decisions—especially when clinical differences

are subtle.

Exploration Bonus: Balanced patient allocation between treatment arms is es-

sential for ensuring robust estimation of treatment effects. To promote this balance,
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the exploration bonus is defined as:

Rexplore =

(
min{n(E)

t , n
(C)
t }

max{n(E)
t , n

(C)
t }

)
·
(
1− t

T

)
.

The fraction
min{n(E)

t ,n
(C)
t }

max{n(E)
t ,n

(C)
t }

is a measure of balance, attaining a value of 1 when al-

locations are perfectly balanced and values closer to 0 when they are skewed. The

multiplicative factor 1− t
T
introduces a decay over time, reflecting the intuition that

early in the trial it is particularly important to gather balanced information, while

toward the end, exploiting the accumulated knowledge becomes more critical.

Final Reward Function: Combining all components, the final reward function at

time t is given as:

Rt = (r
(E)
t + r

(C)
t )︸ ︷︷ ︸

Rimmediate

+λTVD·(TVDt − TVDt−1)︸ ︷︷ ︸
Rinformation

+λexplore·

[(
min{n(E)

t , n
(C)
t }

max{n(E)
t , n

(C)
t }

)
·
(
1− t

T

)]
︸ ︷︷ ︸

Rexplore

.

In this formulation:

1. Rimmediate ensures that the model directly rewards the number of patients who

experience clinical success, aligning with the primary clinical objective.

2. The term λTVD · Rinformation encourages the agent to favor policies leading to

state updates where the posterior distributions become more distinct. Such a

separation suggests that the data is informative enough to discern treatment

efficacy differences, which is paramount for adapting allocations effectively.

3. The exploration bonus, scaled by λexplore, promotes a balanced allocation among

treatment arms, especially during the early phases of the trial. This balance

mitigates the risk of prematurely favoring one arm and ensures that both treat-

ments are sufficiently explored to attain reliable posterior estimates.
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The hyperparameters λTVD and λexplore control the relative importance of the long-

term information-acquisition and balanced allocation objectives concerning the im-

mediate clinical successes. Tuning these parameters allows the decision-maker to

navigate the trade-off between maximizing current patient benefits and investing in

learning that improves subsequent decisions—a key feature in adaptive response de-

signs.

43



Chapter 3

Soft Actor-Critic for Policy

Optimization in Adaptive Trials

To solve the above MDP outlined in Chapter 2, we employ a deep reinforcement learn-

ing algorithm: Soft Actor-Critic (SAC). SAC is an off-policy actor-critic method that

maximizes a trade-off between return and entropy. We chose a SAC algorithm for its

ability to handle continuous action spaces and for its robust exploration via entropy

regularization. Haarnoja et al. (2018), who developed the algorithm, found that

SAC achieves state-of-the-art performance when applied to real-world tasks, specifi-

cally when compared to other off-policy, model-free deep reinforcement learning (RL)

algorithms that exhibit high sample complexity and are brittle to hyperparameters

[15]. As such, we chose SAC as is well-suited for the high-stakes, data-constrained

setting of clinical trials. In this section, we provide a deeper overview of SAC’s com-

ponents, including entropy regularization, twin critic networks, reparameterization

trick, and automatic temperature tuning. After establishing the overarching algo-

rithm structure, we contextualize why they are beneficial for an adaptive clinical trial

setting, and relate SAC’s theoretical motivations to our application.
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The components of SAC and its specific use case and context are detailed in this

chapter. However, to provide some initial clarity, consider the diagram below (adapted

from [9]), which we provide to help visualize the overall flow of the algorithm.

At a high level, the Trial Environment (grey box) continuously simulates the

clinical trial by generating new patients—this represents the current state—and by

presenting several treatment arms available for assignment. An arrow labeled “State”

carries this information to the Actor (purple box), which uses a deep neural network

to process the state and output an action (i.e., the treatment arm to assign).

Once the action is selected, it flows from the Actor (with an accompanying no-

tation indicating stochastic sampling via a normal distribution) back to the Trial

Environment. The environment then simulates the outcome based on that action, pro-

ducing a reward (e.g., reflecting patient response and exploration bonuses) and a next

state. These pieces of information—the initial state, the reward, the action taken, and

the resulting next state—are grouped into a transition tuple (State, Reward, Action, Next State).

This complete transition is then recorded in the Replay Buffer, which stores past

experiences. The Replay Buffer serves as the source for sampling mini-batches used

to train the Actor and the twin Critic networks (labeled as Q1 and Q2). The Critics

use these samples to compute temporal-difference (TD) losses and update their value

estimates, while the Actor is updated using feedback from the Critics (including the

entropy-regularized loss) to improve its policy. The cyclic flow—from environment

to actor to environment, storing transitions, and then updating the networks—forms

the core of our SAC framework in the clinical trial context.
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Figure 3.1: SAC Diagram

3.1 Entropy-Regularized Objective for Efficient Ex-

ploration

Unlike standard RL algorithms that maximize only the expected return, SAC aug-

ments the objective with an entropy term [29]. Entropy H(π(· | x)) is a measure of

randomness in the policy’s action selection. SAC’s actor is trained to maximize a

weighted sum of expected reward and policy entropy. Haarnoja et al. (2018) illus-

trate this, highlighting that the actor seeks to “succeed at the task while acting as

randomly as possible” [14]. This is formalized by the maximum entropy RL objective:

Jπ = Ext∼ρπ , at∼π

[ T−1∑
t=0

γt
(
r(xt, at) + αH(π(· | xt))

)]
, (3.1)
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where H(π(· | x)) = −Ea∼π(·|x)[log π(a|x)] is the entropy and α is a temperature pa-

rameter that balances the importance of the entropy term relative to the reward. SAC

typically considers an infinite-horizon discounted setting, but the intuition applies to

our finite-horizon discretized trial case, where we effectively treat γ ≈ 1 for episode

return. By injecting entropy into the objective, SAC encourages exploration. As ex-

plained briefly in Chapter Two, previous methods explored were heavily discretized

to reduce computational complexity, whereas with SAC the policy gets higher ob-

jective values by being stochastic. The main point is that this prevents premature

convergence to a deterministic policy that might be suboptimal.

In the context of an adaptive trial, this entropy bonus is extremely valuable.

It ensures that the allocation policy π(a | x) doesn’t collapse too quickly to always

assigning one arm, which could happen if the agent gets a few good outcomes early for

one treatment. Instead, SAC’s policy is incentivized to maintain diversity in actions,

meaning it keeps some randomness in patient assignment. This built-in exploration

mechanism complements our intrinsic reward shaping. Even if the reward shaping

from the information gain and exploration bonuses wanes later in the trial, SAC’s

entropy term continues to encourage trying alternative allocations, aiming to reduce

the risk of getting stuck in a suboptimal allocation strategy.

From a theoretical standpoint, maximum entropy RL can be seen as a way of

regularizing the policy search so that the agent considers a wide range of strategies.

This is critical in a domain like clinical trials where over-committing to one arm

based on inadequate data can have ethical and scientific consequences, as discussed

in other chapters. SAC’s entropy term can be viewed as an automated form of

“exploration noise” that persists throughout training. Indeed, Haarnoja et al. report

that this approach leads to more stable and reliable learning, preventing the policy

from converging to a poor local optimum prematurely [14]. In our experiments, this

translated to the agent continuing to allocate some patients to the worse-performing
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arm if there remained uncertainty, rather than fully exploiting in a greedy manner

too early.

What’s nice about how the algorithm is set up, is that you can adjust how much

randomness SAC aims for with the α temperature (more on that below), effectively

setting a desired target entropy (e.g., one might set it to − dim(A) as a heuristic).

In our continuous one-dimensional action space, a typical target entropy might be a

modest negative value (since a uniform random policy on [0,1] has a certain entropy).

By tuning α, we can control the exploration-exploitation balance: a higher α en-

courages more exploration (specifically, think stochasticity), and a lower α makes the

policy put more weight on reward maximization, which leads to a greedier and more

deterministic behavior. Conveniently, Haarnoja et al. (2018) devised an automatic

entropy tuning mechanism for SAC to adjust α so that the observed entropy of the

policy approaches a target level (more on this as well below). This is particularly

useful in our setting because the optimal amount of exploration may change over the

course of training or differ between phases of the trial. Thus, being able to allow the

algorithm to self-tune the exploration level is quite convenient and reduces the need

for extensive manual hyperparameter guessing.

3.2 Twin Critic Networks and Stabilized Learning

SAC is an actor-critic algorithm, which means it uses function approximators for both

the policy (actor) and the value function (critic). In fact, SAC employs two Q-value

networks (critics) in parallel, which is why it’s referred to as twin critics. Each critic

Qϕ1(x, a) and Qϕ2(x, a) estimates the expected return (cumulative reward) from state

x after taking action a and thereafter following the policy. Why two critics? This

design is inspired by the clipped Double Q-learning trick introduced by Fujimoto et

al. (2018) in the TD3 algorithm, which SAC incorporates for continuous control [11].
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The issue it addresses is overestimation bias in value function learning. Specifically,

with function approximation and noisy updates, a single critic can produce over-

optimistic Q-value estimates, which in turn can lead the actor astray, since the actor

tries to maximize the Q. By training two independent critics and using the minimum

of their predictions for key computations (such as in the actor update or in forming

the target values), SAC ensures a more conservative estimate of value. Essentially,

the pessimistic bound (minimum of two Qs) reduces the likelihood of overestimating

the returns of any state-action, thereby improving training stability.

In practice, the twin critics in SAC are trained with standard temporal-difference

(TD) learning. They minimize a bellman error loss concerning a target value that

involves the next state’s value [12]. SAC’s critic loss for each Qϕi
is as follows:

JQ(ϕi) = E(xt,at,rt,xt+1)

[(
Qϕi

(xt, at)− yt
)2]

, (3.2)

where the target yt = rt + γ
(
minj=1,2Qϕ̄j

(xt+1, a
′
t+1) − α log π(a′t+1 | xt+1)

)
. Here

a′t+1 ∼ π(· | xt+1) is a sample action from the current policy at xt+1, and ϕ̄j indicates

the parameters of a target network, which is an exponential moving average of past

critic parameters for stability. Specifically, this target yt uses the minimum of the

two target Q-networks and also subtracts the entropy term, since the actor’s objec-

tive includes entropy. In taking the minimum, if one critic inadvertently outputs an

overestimated value, the other (typically lower) critic’s value will be used, prevent-

ing an inflated target [11]. This technique has been shown to significantly stabilize

training in continuous control tasks. In a clinical trial setting, it should go without

saying that data (1) tends to be highly scarce, and (2) can be highly variable from

patient to patient. Consequently, function approximation could easily overshoot due

to noise, so the twin-critic approach is quite helpful by providing a form of built-in

regularization of the value estimates.
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Stability in value estimation is important for clinical trial RL because erratic or

divergent critical estimates could lead to unsafe or highly suboptimal policies. Zhao et

al. (2009) who developed reinforcement learning trials for discovering individualized

treatment regimens using Q-learning, highlight that ”estimating the value function is

the most important component” [39]. With twin critics, SAC achieved more stable

learning, evidenced by the low variance achieved in performance across random seeds.

Particularly, Haarnoja et al. note that SAC, with these improvements, is very stable,

achieving similar performance across different runs [14]. This reliability is crucial, as

in a high-stakes scenario we prefer an algorithm that we can trust to converge similarly

each time (or in each simulation), rather than one that occasionally collapses or wildly

oscillates.

3.2.1 Stochastic Policy and the Reparameterization Trick

The actor in SAC outputs a stochastic policy π(a | x), modeled by a neural network

that produces the parameters of a Gaussian distribution (i.e., mean and variance) from

which actions are sampled. In our implementation, the action is one-dimensional and

bounded to the interval [0, 1]. To ensure that the unconstrained Gaussian sample

is mapped to this interval, we apply a squashing function. While some SAC imple-

mentations use a tanh function (possibly followed by a shift/scale transformation),

our implementation employs a logistic sigmoid function directly because it naturally

outputs in [0, 1] and is simple to differentiate [34]. Specifically, the network first pro-

duces an unconstrained Gaussian sample via the reparameterization trick. That is, if

the policy outputs mean µ(x) and standard deviation σ(x) (which, contextually, are

its current beliefs about what the best allocation should be, given the current state

x), we sample:

ϵ ∼ N (0, 1)
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which introduces stochasticity, and then computes the latent variable:

ã = µ(x) + σ(x) ϵ.

As mentioned, to ensure the action lies in [0, 1], we just apply the logistic sigmoid:

a = σ(ã) =
1

1 + e−ã
.

This entire process defines a deterministic mapping:

a = fθ(x, ϵ) = σ
(
µ(x) + σ(x) ϵ

)
, (3.3)

with θ denoting the policy parameters.

Importantly, when applying the squashing function, the probability density must

be corrected via the change-of-variables formula. If we define the pre-squashed vari-

able as ã and note that a = σ(ã) (with σ being the logistic sigmoid), the derivative

of a with respect to ã is:

da

dã
= a(1− a).

Thus, the transformed density is:

πθ(a | x) = N (ã;µ(x), σ(x)2)

∣∣∣∣dãda
∣∣∣∣ = N (ã;µ(x), σ(x)2)

1

a(1− a)
, (3.4)

where ã = σ−1(a). So consequently, we have that the log-likelihood becomes:

log πθ(a | x) = logN (ã;µ(x), σ(x)2)− log
(
a(1− a)

)
. (3.5)

A key component enabling efficient training of the policy is the reparameterization

trick. Motivated by Haarnoja et al. (2018), instead of sampling actions directly from
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the Gaussian distribution parameterized by the policy — which would complicate

gradient computation — we express the action as a deterministic function of the

state, the policy parameters, and an independent noise source [14]. As a result, the

expected value:

Ea∼π[Q(x, a)] = Eϵ∼N (0,1)

[
Q
(
x, fθ(x, ϵ)

)]
(3.6)

allows us to push the gradient operator inside the expectation and differentiate with

respect to θ via standard backpropagation.

Thus, for the entropy-regularized actor objective:

Jπ = Ea∼πθ

[
Qmin(x, a)− α log πθ(a | x)

]
, (3.7)

its gradient can be estimated as:

∇θJπ = ∇θEa∼πθ
[Qmin(x, a)− α log πθ(a | x)] (3.8)

≈ Eϵ∼N (0,1)

[
∇θ(Qmin(x, fθ(x, ϵ))− α log πθ(fθ(x, ϵ) | x))

]
, (3.9)

where Qmin(x, a) = min(Qϕ1(x, a), Qϕ2(x, a)).

Note that the gradient estimate can be fully expanded using fθ(x, ϵ) = σ
(
µ(x) +

σ(x) ϵ
)
(which we don’t shown).

In the trial context, having a smoothly adjusting stochastic policy is beneficial.

It means the agent can fine-tune the probability of allocation to the experimental

arm as a continuous variable. Small changes in its neural network output lead to

small changes in at, which is important for stable learning. The reparameterization

trick ensures that the policy gradient algorithm can properly credit/blame the pol-

icy parameters for the outcomes observed, which is non-trivial because outcomes are

noisy (Bernoulli) and the policy’s effect is indirect (through probabilities). Thanks

to reparameterization, SAC can handle this credit assignment through the chain rule,
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which likely contributes to its sample efficiency. It has been observed that reparame-

terized policy gradients improve learning speed in continuous domains, which aligns

with our need to learn from relatively few trials. The results obtained when running

simulations will be discussed in the following chapters, however, we note that the

SAC agent was able to learn an allocation policy fairly effectively. This was done

within a few thousand simulation episodes, using varying lengths of T .

Previous iterations of the model and overarching framework didn’t really come

close to converging on a policy, even after thousands of simulation episodes and

many hours. That being said, the current implementation is still considerably beaten

computationally by approaches like Ahuja and Birge (2020), which we’ve previously

discussed. In their algorithm (SLAX), they employ a grid-based state discretization,

minimal triangulation to partition this approximate state space into a finite number

of convex regions, and barycentric interpolation to approximate the value function.

SLAX then applies several techniques that allow them to run very computationally

efficiently, including restriction of both the time horizon (using limited lookahead)

and action set (allocating patients in blocks) [2]. Apart from SLAX, other algorithms,

including traditional bandit algorithms, require analytical derivations or grid searches.

Establishing an accurate grid in the context of clinical trials has to be done very

carefully, and if mismodeled, can be very problematic. By using the SAC, we avoid

this and take advantage of the fact that the algorithm learns by gradient descent.

3.2.2 Automatic Entropy Tuning (Temperature Auto-Adjustment)

An important hyperparameter in SAC is the entropy weight α mentioned earlier.

Rather than fixing α, SAC often includes an automatic tuning mechanism to adjust

α during training [15]. The idea is to set a target entropy (e.g. a desired average

entropy for the policy) and then have α updated by gradient descent to minimize

the difference between the current policy entropy and the target. Concretely, the
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temperature α is updated by minimizing the following loss:

J(α) = E(st,at)∼D

[
−α
(
log πθ(at | st) +Htarget

)]
, (3.10)

where D represents the distribution of state–action pairs collected in the replay buffer,

and Htarget is the target entropy that we set. The gradient ∇αJ(α) is zero at the

optimum when the average log πθ(a | s) + Htarget equals zero, meaning the policy’s

entropy matches the target. Thus by updating α in the direction that reduces this

discrepancy, we can enable SAC to effectively self-tune the level of exploration.

This mechanism is leveraged in our implementation to avoid manually searching

for the right α, which can get quite tedious when trying to tune other hyperparameters

at the same time. That said, not having to tune α is especially useful in our domain

because the optimal exploration rate is not known a priori. It’s reasonably expected

that more exploration will be needed early in the trial and presumably less later.

As such, we tackle this in two ways, with the first being the Rexplore term in the

reward function, and the second the entropy tuning, which further adjusts the overall

randomness of the policy during training. The goal here is to maintain a balanced

exploration-exploitation trade-off, and overall we set up this model to err on the side

of caution. However, what’s nice about the auto-tuning of α is that if our reward

shaping already encourages sufficient exploration and the observed policy entropy is

above the target, then α will decrease. In turn, this reduces the extra penalty which

then allows the policy to focus more on maximizing reward. Conversely, if the agent

begins to exploit too heavily (i.e., the policy becomes too deterministic with entropy

falling below the target), then α will increase in order to push the policy back toward

exploration.

This adaptability makes SAC robust across different configurations. Haarnoja et

al. (2018) extended SAC with this automatic entropy tuning mechanism and found
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that it significantly improved stability across hyperparameter choices [15]. In our

training, we experimented with target entropy values of [−2,−1,−0.5]. As briefly

mentioned before, existing literature commonly sets the target entropy to − dim(A)

[15]. In doing so, the resulting policy can automatically learn to be near-deterministic

in states where one treatment’s posterior is overwhelmingly superior while remaining

sufficiently stochastic in ambiguous states. This is all done without us having to

explicitly code such behavior.

3.2.3 Curriculum and Trial-level Training

As we have developed, the overall system is formulated as an MDP where at each

discrete time step, the clinical trial state is updated using Bayesian principles. The

training process involves two nested loops:

1. A curriculum-learning loop that gradually increases the complexity of the envi-

ronment.

2. A trial-level training loop that gathers trajectories of state transitions and per-

forms gradient updates on the actor and critic networks.

Curriculum Learning and Environment Adaptation

Curriculum learning is a training strategy in which an agent is initially exposed to

simplified or easier versions of a task before gradually progressing to more challenging

variants. This deliberate ordering leverages the idea that early mastery of basic skills

can serve as a foundation, thus reducing the need for extensive trial-and-error when

dealing with complex scenarios later on. By structuring the learning process into

phases of increasing difficulty, the agent can refine its policy incrementally. In turn,

this leads to faster convergence and improved performance in the full-scale task that

we ultimately want the agent to perform well on [22].
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In the context of our clinical trial environment, the decision-making process is

complex due to multiple interacting components:

• The environment evolves over a finite horizon T , and the agent must learn to

make allocation decisions across multiple periods.

• The underlying model uses Bayesian updates to adjust beliefs about treatment

success probabilities based on patient outcomes.

• The reward function incorporates immediate outcomes, information gain, and

exploration incentives.

As such, if the agent is thrown into a full-scale problem with a long horizon and

full complexity of the state space right from the start, the extensive state and action

spaces and the inherent uncertainty may overwhelm the training process. Naturally,

this can lead to unstable learning or convergence to suboptimal policies. This is

amplified by the stochasticity of a clinical trial setting to begin with, and we saw

this when previously exploring basic Q-learning approaches to determine the optimal

policy.

To illustrate this, the expected return that the agent attempts to maximize is

given by:

J(π) = E

[
T−1∑
t=0

γtRt

]
, (3.11)

Where Rt is the composite reward. Curriculum learning starts the agent with a

smaller effective T , so if we define by Tphase = Tbase · Tfactor, where Tfactor < 1, then

the agent initially optimizes:

Jphase(π) = E

[
Tphase−1∑

t=0

γtRt

]
, (3.12)

This reduced horizon simplifies the credit assignment problem and lowers the variance

in estimates, making the RL updates more stable.

56



As such, the reward is adjusted in each phase by the adjustment of the weights

for the information gain and exploration bonuses by a scaling factor k. Specifically,

the environment’s hyperparameters are updated as:

λphase
TVD = λbase

TVD · k, (3.13)

λphase
explore = λbase

explore ·
(
1 + (1− Tfactor)

)
= λbase

explore ·
(
2− Tfactor

)
. (3.14)

Trial-Level Training

Within each curriculum phase, training is conducted over several full clinical trials,

which we can refer to as episodes. Specifically, for each episode e:

1. The environment is reset, setting α
(E)
0 , β

(E)
0 (and similar for the control arm) to

their initial values and resets the cumulative counters.

2. An action is selected, where for each time step t in the episode (with maximum

Tphase:

• The agent selects an action at using its policy network: at ∼ πθ(· | xt. This

continuous action is then mapped to a discrete allocation.

• The environment simulates outcomes for both arms using an underlying

p
(E)
t and p

(C)
t , and subsequently the successes are sampled:

r
(E)
t ∼ Binomial(n

(E)
t , p

(E)
t ), r

(C)
t ∼ Binomial(n

(C)
t , p

(C)
t ).

• The Beta parameters are updated using the update previously discussed.

• The total reward is computed

3. The updates are based on mini-batches sampled uniformly from the replay

buffer. The training updates follow the SAC methodology:
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• Critic Update: For a mini-batch {(si, ai, ri, s′i, di)}Bi=1, the target for the

critic is computed as:

yi = ri + γ (1− di)

(
min
j=1,2

Qtarget,j(x
′
i, a

′
i)− α log π(a′i | x′

i)

)
, (3.15)

where a′i is sampled from the actor’s policy for state x′
i (using the reparam-

eterization trick), Qtarget,j are the target critic networks, γ is the discount

factor, α is the temperature parameter governing the entropy bonus, and di

is just a ”done” flag. From here, the critic loss for each critic j is computed

as:

LQj
=

1

B

B∑
i=1

(Qj(xi, ai)− yi)
2 , (3.16)

And finally, gradient descent is applied to minimize LQj
.

• Actor Update: The actor’s objective is to maximize the expected return

while also maximizing the policy’s entropy. This can be written as:

Jπ = Ex∼D, a∼π

[
Qmin(x, a)− α log π(a|x)

]
, (3.17)

where Qmin(s, a) = min{Q1(s, a), Q2(s, a)}. Note that this is equivalent to

minimizing the actor loss:

Lπ =
1

B

B∑
i=1

(α log π(a′i | xi)−Qmin(xi, a
′
i)) , (3.18)

where a′i are reparameterized samples from the current actor’s policy. The

gradients are computed using the chain rule thanks to the reparameteri-

zation trick.

• Temperature Tuning: The temperature parameter α is adjusted by
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minimizing:

Lα = − 1

B

B∑
i=1

logα (log π(a′i | xi) +Htarget) , (3.19)

where Htarget is the target entropy that aims to control the randomness of

the policy.

• Soft Updates of Target Networks: The target critic networks are

updated using exponential moving averages:

θtarget ← τ θcurrent + (1− τ) θtarget, (3.20)

where τ is a small constant controlling the soft update of the target net-

work.

4. The algorithm evaluates, where after each episode it computes the average re-

ward over the most recent episodes, logs the total success proportion (total

successes divided by N × T ), and checks for improvements relative to the best-

observed performance

5. Finally, at the end of training in a curriculum phase (or overall phases), the

function returns a list of episode rewards and a history of evaluation metrics

(i.e., average reward, success proportion, elapsed time).

The training process gradually exposes the SAC agent to increasingly complex

versions of the clinical trial by scaling the trial length and adjusting reward weights.

Within each phase, episodes are executed where illustrated above that the agent se-

lects actions, observes outcomes, receives a compounded reward signal, and improves

its policy and value function approximations by sampling from a replay buffer and

applying gradient descent on actor and critic losses (also tunes the temperature pa-

rameter as we’ve discussed).
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Chapter 4

Comparative Performance in

Simulated Clinical Trials

We perform an extensive numerical simulation study to evaluate the performance of

our adaptive clinical trial framework and its SAC-based patient allocation strategy. In

these simulations, we consider a range of hypothetical scenarios that capture diverse

patient outcomes under controlled clinical settings. It is important to note that, given

the inherent complexity and uncertainty of clinical trials, no fully optimal solution can

be obtained. Nevertheless, by systematically comparing the reinforcement learning

agent’s policy against a variety of heuristic benchmarks, we can rigorously assess

performance differences.

This simulation analysis primarily serves as a robust testbed for quantifying key

performance metrics. Most notably, we analyze the success proportion (the fraction

of patients achieving favorable outcomes) and the information gain (as defined in the

reward function in Chapter 2). Furthermore, the results provide valuable insights

into the trade-offs between exploration and exploitation that underpin our adaptive

methodology, and they enable us to analyze the evolution of the agent’s decision-

making trajectory across various scenarios.
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Although simulation studies remain within the theoretical realm, they serve as a

critical “proof of concept” that showcases our model’s potential to improve patient

allocation strategies across a suite of different clinical trial situations. In this chapter,

we describe the design of our simulation experiments, present the performance metrics

obtained, and discuss the implications of our findings for future clinical trial designs.

4.1 Simulation Methodology

Before outlining our simulation methodology, we clarify the distinction between an

episode and a simulation. In our framework, an episode refers to one complete run

of the clinical trial environment, from start to finish. During this complete run, the

agent makes a sequence of N allocation decisions at each of the T discrete decision

points. Consequently, each episode generates a total of N · T outcomes. In contrast,

a simulation consists of many independent episodes run under the same (or varying)

conditions. This ensemble of episodes is used to capture variability and obtain robust

statistical estimates of key performance metrics.

Each episode simulates a complete clinical trial modeled via a Beta–Binomial

framework. For every trial, we assume known true success probabilities, p
(E)
true for the

experimental arm and p
(C)
true for the control arm. The environment is parameterized

by these probabilities, the cohort size N , the number of decision periods T , and the

initial Beta priors for each arm. At each decision point, the agent selects an allocation,

and subsequently the environment then simulates patient responses through binomial

draws based on the true success probabilities. The resulting trajectory, including

states, actions, rewards, and updated beliefs, is stored in a replay buffer for further

training updates.

Our simulation execution proceeds in several stages:

1. Hyperparameter Tuning: For each test scenario defined by distinct trial
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settings, we perform hyperparameter tuning to optimize the SAC agent.

2. Curriculum Training: The agent is trained using a curriculum learning strat-

egy (as detailed in Chapter 3), which subdivides the trial into phases of increas-

ing complexity.

3. Policy Evaluation: After training, we run multiple simulation episodes to

assess policy performance and compare the SAC agent against several heuris-

tic benchmarks: Fixed, Greedy, Pure Learning (PL), and Ideal (Oracle). Key

performance metrics, including success proportion, allocation ratios, and infor-

mation gain, are computed from these runs.

We define the heuristics we compare our SAC-based model’s outcomes to as follows:

• Fixed: The fixed policy serves as a baseline, allocating a constant, fixed pro-

portion of 0.5 to both of the treatment arms. This is what a majority of clinical

trial designs currently implement and is not adaptive. Because of this, com-

parison to a fixed design is one of the most important contributions of this

thesis.

• Greedy: The greedy policy allocates all patients at each time step to the

treatment arm with the higher estimated success probability (posterior mean).

Specifically, at time t it allocates 100% of patients to the treatment arm with

largest value
α
(·)
t

α
(·)
t +β

(·)
t

(where (·) is either E or C). It’s conventionally termed

”greedy” because it maximizes immediate expected successes based solely on

current point estimates, without accounting for uncertainty. Hence, it can be

thought of as the ”earning” component of the learning vs. earning tradeoff.

• Pure Learning (PL): The PL policy allocates all patients at each time step

to the treatment arm with a higher probability of being superior, determined by
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integrating over the full posterior distributions of both treatment arms. Specif-

ically, this policy computes P(p(E) > p(C)) =
∫ 1

0
fE(x)FC(x) dx,, (where fE(x)

and FC(x) are the PDF and CDF of the Beta distributions for the experimental

and control arm respectively) and allocates 100% of patients to the experimen-

tal arm if this probability exceeds 0.5, and 100% to control if not. As the name

suggests, this heuristic can be thought of as the ”learning” component of the

learning vs. earning tradeoff.

• Ideal (Oracle): This policy assumes perfect knowledge of the underlying true

treatment success probabilities and allocates all patients to the treatment with

the highest true probability of success (i.e., 100% to the experimental treatment

arm if p
(E)
true > p

(C)
true ). Although this approach is not implementable in practice

because true probabilities are unknown, we use it to provide somewhat of an

upper bound on the performance. It’s important to note that since patient

outcomes are Bernoulli, other heuristics may perform better by chance, however,

this enables comparison to a policy with full prior knowledge.

4.2 Simulation Results and Key Findings

To assess the efficacy of our adaptive clinical trial framework, we evaluated the per-

formance of our SAC-based patient allocation strategy through extensive numerical

simulations. Two distinct training schemes were employed:

1. True-Probability Training: In this scheme, the agent was trained for 5,000

episodes using patient outcomes generated from Bernoulli draws based on the

true success probabilities, p
(E)
true and p

(C)
true. Here, the outcomes perfectly reflect

the actual treatment effects.

2. Estimated-Probability Training: In a parallel setting, the agent was also

trained for 5,000 episodes, but in this case, outcomes were generated using the
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model’s evolving estimated success probabilities, computed as

α
(E)
t

α
(E)
t + β

(E)
t

and
α
(C)
t

α
(C)
t + β

(C)
t

.

Although the agent does not have direct access to the underlying true values,

it instead receives outcomes that statistically represent them.

The primary objective of employing these two schemes is to quantify the impact of

uncertainty in outcome generation on the agent’s learning process and performance.

In both cases, the agent observes only the stochastic outcomes without knowing the

true underlying probabilities.

For each training scheme, we simulated 10 different hypothetical trial scenarios —

varying the true success probabilities, the initial prior estimates, the cohort size (N),

and the number of decision periods (T ). During training, we tuned hyperparameters

and validated the model every 50 episodes, allowing us to monitor the training trajec-

tory over time. After the training phase, we conducted 500 independent simulations

(each consisting of 500 evaluation episodes) to robustly evaluate policy performance.

As mentioned, these simulations compare the performance of the SAC policy against

the heuristic policies defined above.

The key performance metrics are defined as follows. The success proportion is

the fraction of successful outcomes recorded within a single clinical trial episode,

computed as S/(N × T ). Here, we define S =
∑T

t=1[r
(E)
t + r

(C)
t ] as the total number

of successes observed in that episode. The standard error of the success proportion is

estimated as the standard deviation of the per-episode success proportions divided by

the square root of the number of episodes. The allocation ratio for the experimental

arm is defined as AE/(AE + AC), where we define AE and AC in chapter two as the

total numbers of patients assigned to the experimental treatment and control arms,

respectively, over the episode. Lastly, the information gain quantifies the reduction
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in uncertainty about the treatment success probabilities achieved during an episode,

defined in the reward function section of chapter Chapter Two.

4.2.1 True-Probability Training Results

The results for the training scheme where the model is trained to realize Bernoulli

patient outcomes based on the true success probabilities for each arm are highlighted

in Table 4.1 below.

Parameters Expected Proportion of Successes (Std. Error)

p
(E)
true; p

(C)
true (α

(E)
0 , β

(E)
0 ); (α

(C)
0 , β

(C)
0 ) N T Fixed Ideal Greedy PL SAC

0.70; 0.50 (1,1); (1,1) 100 8 0.599 (0.0008) 0.700 (0.0007) 0.614 (0.0029) 0.621 (0.0028) 0.700 (0.0007)

0.65; 0.50 (3,7); (5,5) 25 20 0.573 (0.0009) 0.650 (0.0009) 0.498 (0.0010) 0.500 (0.0011) 0.622 (0.0009)

0.65; 0.40 (2,8); (8,2) 40 18 0.524 (0.0008) 0.650 (0.0008) 0.400 (0.0008) 0.399 (0.0008) 0.616 (0.0008)

0.60; 0.55 (4,6); (5,5) 30 25 0.575 (0.0008) 0.601 (0.0008) 0.550 (0.0008) 0.551 (0.0008) 0.579 (0.0008)

0.58; 0.50 (3,7); (4,6) 40 15 0.541 (0.0009) 0.580 (0.0009) 0.501 (0.0009) 0.500 (0.0009) 0.563 (0.0009)

0.57; 0.55 (1,1); (1,1) 100 8 0.560 (0.0008) 0.571 (0.0008) 0.552 (0.0008) 0.553 (0.0007) 0.566 (0.0008)

0.54; 0.50 (2,2); (2,2) 60 25 0.520 (0.0006) 0.540 (0.0005) 0.526 (0.0008) 0.526 (0.0008) 0.529 (0.0006)

0.53; 0.50 (1,1); (1,1) 40 20 0.515 (0.0008) 0.531 (0.0008) 0.517 (0.0008) 0.516 (0.0008) 0.522 (0.0007)

0.52; 0.50 (10,10); (10,10) 50 12 0.509 (0.0009) 0.519 (0.0009) 0.510 (0.0009) 0.511 (0.0009) 0.509 (0.0009)

0.20; 0.17 (2,8); (2,8) 80 20 0.184 (0.0004) 0.200 (0.0005) 0.192 (0.0006) 0.192 (0.0007) 0.194 (0.0004)

Table 4.1: Expected proportion of successes (Std. Error) across simulation parameters
with training outcomes realized using true probability of success values

When the SAC policy is trained using the true probabilities for outcome genera-

tion, we see it tends to closely follow the Ideal performance in several scenarios. Only

in the second to last row, do we see a slight under-performance relative to Greedy

and PL. This under-performance can possibly be attributed to the very minor dif-

ference in actual treatment success probability for the experimental treatment versus

control. It is sensible that the agent is converging to the optimal policy because it

realizes outcomes during training based on the underlying true success probabilities.

In principle, we consider this to be similar to the law of large numbers, in which the

agent should eventually have a good understanding of what these true success prob-

abilities are and be able to determine the optimal policy based on that knowledge.
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The performance is steady across varying levels of N, T, and prior values, indicating

the model is functioning properly. However, it’s very important to note that, while

the model may have a good understanding of these actual success probabilities, be-

cause of the way the reward function is designed, the agent is incentivized to explore

different treatment allocations before converging to a definite policy.

This is an important distinction to clarify because, under other heuristics, we

do not know with certainty if a given arm will receive an allocation throughout an

entire trial. As we’ve mentioned previously, this could be very problematic in a real

clinical trial setting, especially when it comes to establishing statistical conclusions

about the treatment arms. Thus, the agent does a good job of establishing certainty

of superiority before allocating a majority to a single treatment arm. For example,

consider the trial scenario in the third row where the true success probabilities are

0.70 and 0.50 for the treatment and control arms respectively, while the priors non-

informative. The true success probabilities heavily favor the experimental treatment

arm (20% difference), and we see the SAC agent achieves a higher expected proportion

of successes PL, Greedy, and Fixed, and identical to the ideal case. We visualize the

SAC agent’s decision-making in Figure 4.1 below. This model output highlights three

important areas that the model is addressing correctly. In the top plot, we see that

the agent originally allocates around 70% of patients to the treatment arm, meaning

it still values learning more about the treatment success probabilities initially. As

the trial progresses, we see the agent eventually converge to the optimal allocation,

meaning it obtained enough evidence to allocate everyone to the treatment arm by

the 6th period of the trial. From the perspective of learning about both treatment

arms, this is ideal: there are still enough patients allocated to the control arm to draw

statistically significant conclusions, however, the allocation gets progressively more

skewed toward the experimental treatment arm as the trial progresses. The latter

touches on the ”ethics” component of adaptive trials that we’ve discussed. Instead
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Figure 4.1: SAC Trajectory - Outcomes Realized with True Success Probabilities
During Training

of quickly exploiting information that could be noisy, it waits to make any highly

unbalanced decisions until certainty is established. Further, even though the agent is

still learning about the treatments, it allocates more and more patients to the superior

arm which enables more patients to progressively be treated with better treatment.

In terms of the middle plot, we see that the agent begins with some initial prior

beliefs about the true success probabilities, different from what they are. As the

trial progresses, the agent quickly converges to the actual values, enabling it to then

approach the optimal treatment allocation policy. That said, the fact that it quickly

converges, yet still allocates some patients to the control arm highlights both the

learning component of the reward function and the maximum entropy RL objective.

Even if the agent has a solid foundational idea of the superior treatment, it errs on
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the side of caution until certain.

Lastly, the bottom plot indicates the belief difference with uncertainty bounds

based on the posterior variances of the true treatment arms. We can see that the

agent starts off with high uncertainty and an incorrect belief difference, however as

the trial progresses we see the belief difference approaches the true difference, and

the uncertainty of the agent decreases. This plot is very indicative of the allocations

observed in the top plot, where when the agent has higher levels of uncertainty, it

employs a more balanced allocation strategy until its belief becomes more certain.

Thus, the agent trained using outcomes generated with the true success proba-

bilities performs as we would expect it to. It understands the environment but still

confirms the reality before making implementing less balanced allocation strategies.

Conversely, the Greedy strategy performs worse as it aims to exploit initial outcomes,

hoping these beliefs are reality. In doing so, it is faced with an unfortunate reality

when presented with potentially noisy observed outcomes at the start of the trial, in

which it tries to exploit an arm that may not be superior. In terms of the fixed strat-

egy, since it isn’t able to exploit knowledge gain as the trial progresses, it naturally

performs worse when the true success probabilities are different. That said, in cases

like the scenario in the ninth row, we see the Fixed strategy performs comparatively,

which we would expect.

To further evaluate the agent’s performance, we consider the hyperparameter tun-

ing results across the trial scenarios. We note that the ordering (1-10) is in line with

the rows from Table 4.1. The hyperparameter tuning results reveal that the SAC

agent’s optimal settings change depending on the trial’s characteristics. This indi-

cates how the agent modulates its learning strategy in response to uncertainty and

treatment effect size. First, we note that λaux represents the hyperparameter that

scales the auxiliary loss term in the actor update of our SAC agent. In our implemen-

tation, the actor’s overall loss is composed of the standard SAC objective—aiming
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Scenario actor lr critic lr γ τ hidden dim α λaux target entropy Best Performance

1 (High Uncertainty) 0.0001 0.0002 0.995 0.005 256 0.3 0.0 -0.5 0.6863± 0.0032

2 (Dynamic Effect) 0.0002 7.7× 10−5 0.99 0.005 256 0.2 0.075 -0.5 0.6192± 0.0051

3 (Misleading Prior) 7.5× 10−5 7.7× 10−5 0.99 0.005 256 0.2 0.05 -0.7 0.6200± 0.0048

4 (Clear Advantage) 0.0001 0.0001 0.995 0.007 256 0.2 0.05 -0.5 0.5944± 0.0033

5 (High-Risk Modest) 0.0002 7.7× 10−5 0.999 0.005 256 0.2 0.075 -0.7 0.5682± 0.0037

6 (Large Cohort, Low-Effect) 0.0002 0.0002 0.99 0.003 256 0.3 0.05 -0.7 0.5665± 0.0039

7 (Minimal Clinically Important) 0.0001 7.7× 10−5 0.99 0.003 256 0.2 0.0 -0.7 0.5327± 0.0027

8 (Subtle Edge) 7.5× 10−5 0.0002 0.99 0.005 256 0.3 0.075 -0.7 0.5235± 0.0042

9 (Barely Superior) 0.0001 0.0002 0.995 0.005 256 0.3 0.0 -0.7 0.5183± 0.0033

10 (Low Event Rate) 0.0001 7.7× 10−5 0.999 0.005 256 0.3 0.075 -0.7 0.1968± 0.0019

Table 4.2: Hyperparameter Tuning Results (True Probability Training)

to maximize the expected Q-value while incorporating an entropy bonus—plus an

additional auxiliary loss. This auxiliary loss is computed as the mean squared error

between the actor’s deterministic action (obtained via the network’s mean output

after the sigmoid transformation) and a heuristic target action derived from state

features (such as the difference between the estimated success probabilities of the

experimental and control arms). Hence, the weight λaux determines the relative in-

fluence of this extra loss signal; a higher value encourages the policy to more closely

follow the heuristic guidance, which can accelerate learning when the initial priors are

weak or misleading, while a lower or zero value allows the agent to rely predominantly

on the SAC objective itself.

Observing Table 4.2 we see that in Scenario 8 (Subtle Edge, Uninformative Priors),

the very low actor learning rate (7.5×10−5) combined with a higher critic learning rate

(0.0002) suggests that when prior information is minimal, the agent updates its policy

very cautiously while relying more on relatively aggressive value estimation to extract

signal from the outcomes. Here, a moderate auxiliary loss weight (λaux = 0.075)

provides extra guidance during the early exploration stages. By contrast, Scenario

2 (Dynamic Treatment Effect) opts for a higher actor learning rate (0.0002) and

a lower target entropy (-0.5), encouraging rapid adjustments in policy to swiftly

capture the pronounced treatment advantage, while the critic learning rate remains
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very low (7.7 × 10−5) to stabilize evaluation of the value function. In Scenario 1

(“High Uncertainty - Large Cohort”), the increase in the discount factor (γ = 0.995)

prioritizes long-term rewards from abundant data, and the elimination of auxiliary

loss (λaux = 0) reflects a reliance on the primary reward signal rather than external

guidance. In scenarios such as 3 and 9, where treatment differences are marginal or

the initial priors are strongly misleading, the agent selects similar low learning rates

to avoid volatile policy changes. However, the agent adjusts other parameters (e.g.,

a lower actor α in Scenario 3) to counterbalance misleading information.

In total, these hyperparameter configurations indicate that the SAC agent dy-

namically modulates its learning speed, degree of exploration, and stability based on

the underlying trial structure. In a more rigorous setting, we could have tuned the

hyperparameters over many more different configurations to notice underlying pat-

terns. However, we note that the automatic tuning is quite convenient and removes

the complexity of manually attempting to tune the hyperparameters.

4.2.2 Estimated-Probability Training Results

Now looking at the case where the SAC agent is trained solely based on its estimates of

the true success probabilities, we see a different story. Here, the agent performs worse

than in the previous case but is still able to outperform certain heuristics across the

scenarios. This setting aims to mimic a more ”realistic” trial setting. Doing so creates

much more uncertainty, in which the agent may converge to a policy it believes to be

optimal, which may not be the case if initial estimates don’t reflect the true success

values. Although we characterize this trial as more ”realistic”, we recognize that

there are several implicit assumptions. Particularly, this characterization is directly

related to the initial Beta priors assigned to the two treatment arms. In a Phase

III or IV trial, one might have a good understanding of the treatment’s true success
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Parameters Expected Proportion of Successes (Std. Error)

p
(E)
true; p

(C)
true (α

(E)
0 , β

(E)
0 ); (α

(C)
0 , β

(C)
0 ) N T Fixed Ideal Greedy PL SAC

0.70; 0.50 (1,1); (1,1) 100 8 0.600 (0.0008) 0.701 (0.0007) 0.619 (0.0029) 0.618 (0.0029) 0.666 (0.0007)

0.65; 0.50 (3,7); (5,5) 25 20 0.572 (0.0010) 0.650 (0.0010) 0.499 (0.0011) 0.501 (0.0010) 0.566 (0.0011)

0.65; 0.40 (2,8); (8,2) 40 18 0.525 (0.0008) 0.649 (0.0008) 0.400 (0.0008) 0.400 (0.0008) 0.430 (0.0008)

0.60; 0.55 (4,6); (5,5) 30 25 0.574 (0.0008) 0.600 (0.0008) 0.551 (0.0009) 0.550 (0.0009) 0.565 (0.0009)

0.58; 0.50 (3,7); (4,6) 40 15 0.540 (0.0009) 0.580 (0.0009) 0.501 (0.0009) 0.502 (0.0009) 0.523 (0.0010)

0.57; 0.55 (1,1); (1,1) 100 8 0.562 (0.0008) 0.570 (0.0008) 0.554 (0.0007) 0.553 (0.0007) 0.557 (0.0008)

0.54; 0.50 (2,2); (2,2) 60 25 0.521 (0.0006) 0.540 (0.0006) 0.525 (0.0009) 0.525 (0.0008) 0.501 (0.0006)

0.53; 0.50 (1,1); (1,1) 40 20 0.514 (0.0008) 0.531 (0.0008) 0.518 (0.0009) 0.516 (0.0008) 0.507 (0.0008)

0.52; 0.50 (10,10); (10,10) 50 12 0.509 (0.0009) 0.519 (0.0009) 0.510 (0.0009) 0.510 (0.0009) 0.501 (0.0009)

0.20; 0.17 (2,8); (2,8) 80 20 0.184 (0.0004) 0.200 (0.0005) 0.194 (0.0006) 0.195 (0.0006) 0.179 (0.0004)

Table 4.3: Expected proportion of successes (Std. Error) across simulation parameters
with training outcomes realized using estimated probability of success values

probability from an earlier stage trial, the agent would effectively be trained based on

the underlying true probability. Further, in most cases, the true success probability

of the control arm will be known in advance, which helps reduce the stochasticity of

the agent’s training.

Consider the third row of Table 4.3. In this scenario, the initial priors indicate

the control arm is superior, while the experimental treatment arm is superior in re-

ality. In this overarching training setting, we know the model was trained based on

these initial beliefs, so naturally, the agent is off to a poor starting point. Because

of this noisy training, the agent has a harder time converging to the optimal policy,

directly impacting the success proportions we observe. Interestingly, the Fixed strat-

egy performs best, apart from the Ideal policy. This indicates that in scenarios where

initial beliefs are uncertain or incorrect, implementing a fixed strategy may be the

best route. There is a reason the fixed, randomized design has been implemented in

clinical trials for so long, however, it’s still somewhat of a surprising result consider-

ing the noticeable true treatment difference of 25% in this scenario. Considering the

number of time steps T is considerable at 18, and the number of patients per cohort

is 40, we expected better performance from the agent in this setting.
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Looking at the scenario in the ninth row of Table 4.3, we observe the following

plot. In this plot, we can see that the SAC agent performs poorly in the case where

Figure 4.2: SAC Trajectory - Outcomes Realized with Estimated Success Probabilities
During Training

true success probabilities for the treatment arms are different, but the priors are

misleading. Figure 4.2 highlights the same three ideas discussed in the true probability

training scenario. In the top plot, we see the agent allocating less than 20% to

the experimental treatment arm throughout the trial. Since the treatments are so

different, the allocations are different than what we observe, however, we know that

the agent was trained on priors that completely misrepresent the true probabilities.

The middle plot highlights that although the training indicated the opposite,
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throughout the trial the agent is actually able to still converge on the true probability

values. However, this altering belief occurs towards the middle of the trial, and only

towards the end does the agent have better beliefs.

The overall understanding is highlighted in the bottom plot, where the belief

uncertainty never quite achieves the true difference. Although it is approaching the

true value, the agent takes a long time to get here. Hence the agent’s initial belief that

the control is significantly better than the experimental treatment carries through for

almost a third of the trial.

Overall, the agent trained using outcomes generated with the estimated success

probabilities performs inferior to the other setting, which we assumed would be the

case. In a real-world setting, you would hope that the initial beliefs of the treatment

are in the correct region, in which case this model would perform well and converge

to the optimal policy. As mentioned, a setting like a Phase III clinical trial would be

much better for this agent to perform well, as there would be a good understanding

of what the true success probabilities are based on previous trials. In doing so,

the agent would perform more in line with the agent trained using the true success

probabilities. This training setting better enables the agent to provide a good optimal

policy. However, we note overall that in scenarios with high uncertainty, where initial

beliefs are significantly different than true values, the agent can’t sufficiently train on

the correct scenario, and hence doesn’t perform ideally.

We include the tuning results for this setting as well, seen in Table 4.2.2. We

note that it is hard to draw conclusions from these hyperparameter choices, as the

agent experienced significantly more noise than when trained using true probability

training results.
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Scenario actor lr critic lr γ τ hidden dim α λaux target entropy Performance

1 (High Uncertainty) 0.0001 0.0002 0.999 0.005 256 0.2 0.0 -0.7 0.6847± 0.0039

2 (Dynamic Effect) 0.0002 0.0002 0.99 0.007 256 0.2 0.05 -0.7 0.5100± 0.0060

3 (Misleading Prior) 7.5× 10−5 0.0001 0.99 0.003 256 0.2 0.05 -0.7 0.4087± 0.0043

4 (Clear Advantage) 7.5× 10−5 7.7× 10−5 0.99 0.005 256 0.2 0.075 -0.5 0.5920± 0.0024

5 (High-Risk Modest) 0.0002 7.7× 10−5 0.99 0.003 256 0.3 0.075 -0.5 0.5687± 0.0036

6 (Large Cohort, Low-Effect) 0.0002 7.7× 10−5 0.99 0.003 256 0.2 0.05 -0.5 0.5654± 0.0050

7 (Minimal Clinically Important) 0.0002 7.7× 10−5 0.995 0.003 256 0.3 0.05 -0.5 0.5365± 0.0023

8 (Subtle Edge) 7.5× 10−5 7.7× 10−5 0.995 0.003 256 0.3 0.0 -0.7 0.5280± 0.0032

9 (Barely Superior) 7.5× 10−5 0.0002 0.999 0.003 256 0.3 0.0 -0.7 0.5162± 0.0038

10 (Low Event Rate) 0.0001 7.7× 10−5 0.995 0.003 256 0.2 0.075 -0.5 0.1969± 0.0018

Table 4.4: Hyperparameter Tuning Results (Estimated-Probability Training)

4.3 Results Summary

In evaluating our Soft Actor-Critic (SAC) reinforcement learning agent within the

adaptive clinical trial model, two distinct training methodologies were utilized: True-

Probability Training and Estimated-Probability Training. The results illuminate crit-

ical differences in policy performance across these training paradigms, providing in-

sights into the efficacy and robustness of our adaptive trial strategy under varying

levels of uncertainty.

Under true probability training, where patient outcomes were generated directly

from known true success probabilities, the SAC agent consistently achieved near-

optimal performance. Specifically, the SAC policy closely matched the Ideal (Oracle)

policy across most trial scenarios, reflecting its ability to leverage accurate training

signals effectively. For instance, in the scenario with a significant 20% true success

rate differential (experimental arm at 70%, control at 50%), the SAC policy reached

the ideal success proportion of 0.700, surpassing Fixed (0.599), Greedy (0.614), and

Pure Learning (PL, 0.621) strategies. Importantly, the SAC policy demonstrated

robust exploration initially, avoiding premature convergence and ensuring statisti-

cally meaningful comparisons by adequately sampling both arms before allocating

predominantly to the superior treatment.
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Visualizing agent trajectories (Figure 4.1) further reinforced that the SAC pol-

icy balances the learning and exploitation trade-off adeptly. Initially maintaining

balanced allocations due to uncertainty, the SAC agent gradually shifted allocations

decisively once sufficient evidence accumulated. This strategy addresses both ethical

and statistical considerations intrinsic to clinical trials: patients are increasingly al-

located to the superior arm over time, while adequate data from both arms ensure

statistical validity.

Hyperparameter tuning results under true probability training (Table 4.2) fur-

ther validate the agent’s adaptability. Different scenarios required distinct parameter

configurations, indicating that the SAC agent dynamically modulated its learning

rate, entropy targets, and auxiliary loss weight based on scenario-specific characteris-

tics. Particularly noteworthy was the nuanced balancing of actor and critic learning

rates and entropy targets, highlighting the SAC agent’s capacity to adjust learning

dynamics appropriately in response to uncertainty and treatment effect magnitude.

In contrast, estimated probability training, which aims to simulate a more realis-

tic scenario by generating outcomes based on evolving estimated success probabilities

rather than known truths, presented greater challenges. Here, the SAC agent ex-

hibited reduced efficacy compared to True-Probability Training, primarily due to

increased uncertainty inherent in the learning environment. However, it still outper-

formed or closely matched heuristic strategies like Fixed, Greedy, and PL in several

cases, although the gap from the Ideal policy widened noticeably.

For instance, in scenarios where initial priors were misleading—such as the third

scenario (true probabilities of 65% vs. 40%, but initially favoring the control arm)—the

SAC policy significantly underperformed (success proportion 0.430) relative to Fixed

(0.525). This underscores the critical dependence of policy effectiveness on accurate

initial prior beliefs. Scenarios like these illuminate conditions under which a non-

adaptive Fixed strategy may remain preferable, especially when initial uncertainty or
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misinformation is substantial.

The trajectory visualization (Figure 4.2) from Estimated-Probability Training un-

derscored this limitation. Although the SAC agent eventually corrected its beliefs

about true probabilities mid-trial, significant allocations had already been influenced

by initially incorrect priors, delaying convergence to optimal allocations.

Hyperparameter tuning under Estimated-Probability Training (Table 4.2.2) re-

vealed less distinct patterns than under True-Probability Training, reflecting higher

noise and uncertainty in the agent’s learning signals. Nevertheless, appropriate hy-

perparameter choices still influenced performance positively, particularly learning

rates and auxiliary loss weights, though the agent’s performance was inherently more

volatile.

In summary, these simulation results robustly demonstrate the strengths and limi-

tations of employing an SAC reinforcement learning agent within an adaptive clinical

trial framework. Under idealized conditions, the agent achieves near-optimal per-

formance by effectively balancing exploration and exploitation. However, its perfor-

mance is sensitive to initial belief accuracy, highlighting critical considerations for

practical deployment. Future exploration could focus on methods for making the

agent’s performance more robust against uncertainty and incorrect prior beliefs, po-

tentially enhancing its utility in realistic adaptive clinical trial contexts.

The code for this model can be found at github.com/mbwiller/SAC-Adaptive-Trial
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Chapter 5

Future Work

In terms of future work, there are several avenues we could take to build upon the

framework. To start, evaluating how the model performs on a real trial dataset would

provide valuable insights into its applicability in a real-world setting. A dataset used

by Varatharajah and Berry (2022) is the International Stroek Trial (IST). This trial

comprised 19,435 patients with suspected acute ischaemic stroke, across 467 hospitals

in 36 different countries. The main goal of the IST was to determine the safety and

efficacy of aspirin and subcutaneous heparin. Under a fixed, randomized design,

patients were allocated to treatment arms using a factorial allocation scheme. A

factorial trial is one that allows testing of multiple different treatment interventions

and examines different combinations of such. In the IST specifically, there were

four treatment arms, defined as ”immediate aspirin”, ”immediate heparin”, ”avoid

aspirin”, and ”avoid heparin”. The primary outcomes analyzed were defined as ”death

within 14 days” and ”death or dependency at 6 months” [13]. With around a 99%

follow-up rate, the overall trial was able to obtain an entire dataset of outcomes,

which can be found publicly online.

Including treatment allocations and patient outcomes, the dataset also published

patient-level covariate information, and a suite of other variables from the trial out-
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comes. Hence, the IST provides an intriguing setting to test the performance of our

SAC-based model, where instead of simulating patient outcomes, the true responses

can actually be ”observed” for the most part. We state for the most part, because in

the case where the model may assign a treatment to a patient that they weren’t actu-

ally given, their observed out would need to be estimated in some manner. This could

be done by incorporating covariates into the model and realizing outcomes based on

all of the patients in the dataset with a given covariate, similar to what Varatharajah

and Berry incorporated into their contextual bandit model [35].

Another avenue worth considering is the incorporation of the Gram-Schmidt Walk,

which is outlined in Appendix D.1.2. The GSW framework was explored extensively,

and the ideas for future consideration are outlined in the Appendix.
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Appendix A

Key Parameters Influencing the

SAC Clinical Trial Model
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Table A.1: Key Parameters Influencing the SAC Clinical Trial Model
Parameter Description Typical Values / Role

N Number of patients per cohort. 25, 30, 40, 50, 60, 80, 100

T Total number of discrete time periods (cohorts)
in the trial.

5, 8, 12, 15, 18, 20, 25

α
(E)
0 Initial alpha for experimental arm’s Beta dis-

tribution.
1, 3, 4, 5, 10

β
(E)
0 Initial beta for experimental arm’s Beta distri-

bution.
1, 5, 6, 7, 10

α
(C)
0 Initial alpha for the control arm’s Beta distri-

bution.
1, 4, 5, 10

β
(C)
0 Initial beta for control arm’s Beta distribution. 1, 5, 6, 8, 10

p
(E)
true True probability of success for experimental

treatment arm.
0.53, 0.55, 0.60, 0.65, 0.70

p
(C)
true True probability of success for control arm. 0.40, 0.50, 0.55

λTVD Scaling factor for the TVD information gain
reward.

0.08, 0.1, 0.12, 0.15

λexplore Scaling factor for the exploration bonus. 0.04, 0.05, 0.07, 0.08

actor lr Learning rate for the actor network; controls
the speed and stability of policy updates.

1× 10−4, 3× 10−4, 1× 10−3

critic lr Learning rate for the critic networks; affects
convergence rate of value function estimation.

1× 10−4, 3× 10−4, 1× 10−3

γ Discount factor for future rewards; balances
immediate vs. long-term reward contributions.

Typically 0.99 or 0.995 (range: 0.95–0.999)

τ Soft update coefficient for target networks; de-
termines the rate target networks track the on-
line networks for stable learning.

Around 0.005 (or 0.007 for slightly faster tracking)

hidden dim Number of hidden units in the neural network
layers; influences model capacity and the abil-
ity to capture complex patterns.

128, 256

α Temperature parameter in SAC that controls
the trade-off between exploration and exploita-
tion by weighting the entropy term.

Typically around 0.2; often auto-tuned

target entropy The target entropy level for the policy when
using auto-tuning; a less negative value encour-
ages more exploration.

E.g., -0.7, -1.0, -2.0
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Appendix B

Additional Outputs

Figure B.1: SAC Trajectory (Subtle Edge - Uninformative Priors) - Outcomes Real-
ized with True Success Probabilities During Training
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Figure B.2: SAC Trajectory (Low Event Rate) - Outcomes Realized with True Success
Probabilities During Training
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Figure B.3: SAC Trajectory (Low Event Rate) - Outcomes Realized with Estimated
Success Probabilities During Training
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Appendix C

Proofs

C.1 Proof of Beta-Binomial Conjugacy

Proof. To prove this result, we consider the true success probability for the treatment

arm at time step t, denoted as p
(E)
t . Going forward, the superscript ”(E)” is removed

for clarity. We assume that pt follows a Beta-distributed prior:

pt ∼ Beta(αt−1, βt−1)

and use the fact that its probability density function (PDF) is defined as:

fpt(pt) =
p
αt−1−1
t (1− pt)

βt−1−1

B(αt−1, βt−1)

where B(αt−1, βt−1) is the Beta function:

B(αt−1, βt−1) =

∫ 1

0

pαt−1−1(1− p)βt−1−1dp
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To clean this up, we use the Gamma function representation of the Beta function:

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

and thus have:

fpt(pt) =
Γ(αt−1 + βt−1)

Γ(αt−1)Γ(βt−1)
p
αt−1−1
t (1− pt)

βt−1−1

Because we model patient outcomes as binary, each individual outcome yi ∈ {0, 1}

follows a Bernoulli distribution, where the success probability is the unknown true

response rate of the assigned treatment arm. Given that we observe rt successes out of

nt total patients at time step t, the likelihood function follows a Binomial distribution:

P(rt | pt) =
(
nt

rt

)
prtt (1− pt)

nt−rt

It follows from Bayes’ Theorem that the posterior distribution for pt given the ob-

served successes rt is:

P(pt | rt) =
P(rt | pt)fpt(pt)

frt(rt)

where frt(rt) is the probability mass function (PMF) of the observed number of suc-

cesses rt thus far:

frt(rt) =

∫ 1

0

P(rt | pt)fpt(pt) dpt =
(
nt

rt

)
Γ(αt−1 + βt−1)

Γ(αt−1)Γ(βt−1)

∫ 1

0

p
rt+αt−1−1
t (1−pt)nt−rt+βt−1−1 dpt

Combining the terms in the Bayes expression, we can write the conditional posterior

for pt as:

P(pt | rt) =

(
nt

rt

) Γ(αt−1+βt−1)
Γ(αt−1)Γ(βt−1)

p
rt+αt−1−1
t (1− pt)

nt+βt−1−rt−1(
nt

rt

) Γ(αt−1+βt−1)
Γ(αt−1)Γ(βt−1)

∫ 1

0
p
rt+αt−1−1
t (1− pt)nt+βt−1−rt−1 dpt
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which simplifies to:

P(pt | rt) =
p
rt+αt−1−1
t (1− pt)

nt+βt−1−rt−1∫ 1

0
p
rt+αt−1−1
t (1− pt)nt+βt−1−rt−1 dpt

and finally by noticing the Beta function in the denominator:

∫ 1

0

p
rt+αt−1−1
t (1− pt)

nt+βt−1−rt−1 dpt = B(αt−1 + rt, βt−1 + nt − rt)

we are left with the following expression:

P(pt | rt) =
p
rt+αt−1−1
t (1− pt)

nt+βt−1−rt−1

B(αt−1 + rt, βt−1 + nt − rt)
(C.1)

Therefore, the full recursive update rules for the posterior parameters of the Beta

distributed random variable is:

αt = αt−1 + rt and βt = βt−1 + nt − rt

This completes the proof for the Beta-Binomial conjugacy.
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Appendix D

Algorithms

The algorithm on the following page provides a high-level overarching flow of how

the adaptive trial simulation algorithm runs from start to finish. In the subsequent

pages, we outline the overarching scheme of the Gram-Schmidt Walk, which was an

algorithm explored when considering the incorporation of covariates into the adaptive

framework. We include it here as a component of future work, specifically due to the

novelty of the algorithm and what it aims to accomplish.
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Algorithm 1 Adaptive Clinical Trial with SAC-Based Patient Allocation

1: Input: Trial parameters: N , T ; Prior Beta parameters α0, β0 for both arms; true
success probabilities p

(E)
true, p

(C)
true; SAC hyperparameters; reward shaping parame-

ters.
2: Output: Learned SAC policy π and performance metrics.
3: 1. Initialization
4: Instantiate environment E with parameters.
5: Initialize SAC agent with actor πθ, critics Qϕ1 , Qϕ2 , and replay buffer.
6: 2. Training with Curriculum Learning
7: for each phase p = 1 to P do
8: Set horizon Tp ← Tfactorp · T
9: Update environment Ep
10: for each episode e in phase p do
11: Reset Ep to obtain x0

12: for t = 0 to Tp − 1 do
13: Sample action at ∼ πθ(st)
14: Simulate environment and update:
15: αE ← αE + rE
16: βE ← βE + (nE − rE)
17: αC ← αC + rC
18: βC ← βC + (nC − rC)
19: Compute reward rt and store transition (xt, at, rt, xt+1)
20: end for
21: Update SAC agent using collected transitions
22: end for
23: end for
24: Soft-update target networks:
25: θtarget ← τ · θcritic + (1− τ) · θtarget
26: 3. Policy Evaluation
27: Evaluate oracle benchmark:
28: S(nE) =

∑nE

i=1 outcomeE(i) +
∑NT−nE

j=1 outcomeC(j)

29: Evaluate heuristic and SAC policies on Bernoulli outcomes using p
(E)
true, p

(C)
true

30: Compute performance metric: Success Proportion = Total Successes
N ·T

31: 4. Parameter Study
32: for each parameter set do
33: Repeat Steps 1–3
34: Record metrics: mean success rate, SE, regret
35: end for
36: Aggregate results and return summary
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D.1 Incorporating the Gram-Schmidt Walk

The Gram-Schmidt Walk (GSW) was explored initially, when our work was consid-

ering the incorporation of covariate balance.

D.1.1 Why Incorporate Covariates into the Adaptive Struc-

ture?

The Gram-Schmidt Walk algorithm, proposed in 2021, provides an optimal and com-

putationally efficient method for achieving robustness and covariate balance within

randomized experiments [16]. Specifically, the GSW uses an orthogonalization pro-

cess (analogous to the Gram-Schmidt procedure in linear algebra) to sequentially

assign treatments to incoming subjects in a way that minimizes emerging covariate

differences between groups. The result is a randomization scheme that is far more

balanced than pure random assignment, yet still retains a probabilistic element to

avoid deterministically assigning everyone. Harshaw et al. (2021) show that the

mean squared error of treatment effect estimates under GSW is dramatically lower

than with traditional randomization, approaching the theoretical optimum given the

constraints [16]. In the context of the adaptive framework presented in this thesis,

we could explore the integration of the GSW within each interim allocation update:

whenever the allocation percentages are adjusted based on the action chosen in the

MDP, the actual assignment of treatments to individual patients is done via a GSW

procedure to ensure covariates remain balanced. In doing so, the hope would be to

couple the ethical and operation advantages of an adaptive design with the statistical

benefits of covariate balance. To illustrate this, consider a trial with N = 20, where

we are at intervention period t and have chosen action action at = 75%. Under this,

we allocate 15 patients to the experimental treatment arm and 5 to the control arm.

Rather than simply randomizing 15 of those patients to E and 5 to C, the GSW-
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based approach assigns those 20 patients in a way that keeps covariates as balanced

as possible across the arms. The goal in doing would be to incorporate a structured

randomization approach with the aim of significantly improving the reliability of the

trial outcomes and reducing confounding.

D.1.2 Outlining the GSW Algorithm

We include, for better understanding, the process in which the GSW algorithm bal-

ances augmented covariates by iteratively assigning patients. Harshaw et al. (2021)

provide the full framework and resulting proofs behind the algorithm [16]. Outlined

below are the specific components of the GSW design that are coupled with the over-

arching adaptive framework, namely the mathematical setup of the GSW design. If

we were using a dataset to test the model retrospectively, we would need full covari-

ate data for each patient in the trial, enabling the GSW to be incorporated. The use

of individual covariate information is rarely included within existing adaptive frame-

works, as obtaining patient-level data is typically very difficult, and other methods

that try to assign distributions to covariates become incredibly assumption-heavy.

In the subsections that follows, we show the overarching algorithm that Harshaw et

al. (2021) detail [16]. This is included (1) due to the work we did exploring the

feasibility of implementing the GSW into the MDP framework, and (2) to highlight

the potential benefits of utilizing the GSW in a clinical trial setting. We note that

the latter has not been done, and hence, we present this as a component of possible

future work.
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Augmented Covariate Matrix (B)

To facilitate covariate balancing, the GSW design uses an augmented covariate ma-

trix:

B =


√
ϕI

ξ−1
√
1− ϕX⊤

 , (D.1)

where:

• ϕ ∈ [0, 1]: A trade-off parameter controlling the balance-robustness trade-off.

Specifically, ϕ = 0 maximizes covariate balance, while ϕ = 1 prioritizes robust-

ness (randomization).

• I: n× n identity matrix, ensuring individual-level randomness.

• X⊤: Transpose of the n×d covariate matrix X, where each row xi contains the

d-dimensional covariates for patient i.

• ξ = maxi∈[n] ∥xi∥: The maximum row norm of X, ensuring appropriate scaling.

Objective of the GSW Design

The GSW algorithm seeks to optimize the assignment vector z, where zi ∈ {−1,+1},

representing the assignment of patient i to the control (−1) or treatment (+1) group,

respectively. As such, z determines Z+ and Z−, where Z+ = {i ∈ [n] : zi = +1}

and Z− = {i ∈ [n] : zi = −1}. The design balances the augmented covariates by

minimizing the discrepancy between groups:

min
z∈{−1,+1}n

∥Bz∥∞

where:

• Bz: Represents the weighted imbalance of augmented covariates between groups.
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• ∥ · ∥∞: Denotes the infinity norm, ensuring the maximum imbalance across all

covariates is minimized.

Algorithm for Assigning Patients

The GSW algorithm operates iteratively to construct the assignment vector z:

1. Initialization:

• Set z1 = 0, where all patients initially have fractional assignments.

• Let t = 1.

2. While zt /∈ {−1,+1}n:

(a) Identify the set of active patients:

A = {i ∈ [n] : |zt(i)| < 1}.

(b) Select a pivot patient p ∈ A uniformly at random.

(c) Compute the step direction ut to minimize the imbalance:

ut = argmin
u∈U
∥Bu∥∞,

where U is the set of vectors satisfying up = 1 and ui = 0 for all i /∈ A.

(d) Compute the step size:

δ+ = min

(
1− zt(i)

ut(i)

)
i∈A

δ− = min

(
−1− zt(i)

ut(i)

)
i∈A
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(e) Randomly select the step:

δt =


δ+, with probability δ−

δ++δ−
,

−δ−, with probability δ+

δ++δ−
.

(f) Update the fractional assignment vector:

zt+1 = zt + δtut.

3. Increment t and repeat until all assignments are in {−1,+1}n.

Output of the GSW Algorithm

After completing the iterations:

• The assignment vector z ∈ {−1,+1}n is finalized, with each patient assigned

to treatment (+1) or control (−1).

• The augmented covariate imbalance ∥Bz∥∞ is minimized, ensuring balance

across all linear functions of the covariates.

The main component of this setup is the choice of the parameter ϕ, which is chosen

by the experimenter. For implementation, one could retrospectively simulate possible

trial outcome by implementing the GSW using varying levels of ϕ. However, taking

ϕ = 1
2
, implies an equal emphasis on covariate balance and robustness of the design.

We note that most clinical trials likely have more of an emphasis on robustness, so

the choice of ϕ closer to 1 may be more acceptable.
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