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Abstract

In a period where socialization is hyper-reliant on digital platforms, permitting in-

formation to spread instantaneously, understanding strategies for optimal influence

is vital. This paper develops a multidimensional, threshold-based opinion dynam-

ics model– extending the work from DeGroot and Friedkin-Johnsen. Our model

incorporates intertopic dependencies and external influence to model competitive

diffusion over networks. We introduce a novel opinion update rule that incorporates

local (neighbor) and global (external players) impact on opinion shifts. Through

coupling linear threshold dynamics with traditional opinion models (FJ) and intro-

ducing intricacies of topic dependencies and multidimensional opinions, our model

emulates realistic evolution of opinion and behavior. By simulating over synthetic

and real-world data from the General Social Survey (GSS), we assess strategies of

one and two-player models where influence is maximized. Results reveal that opti-

mal strategies depend critically on initial opinion distribution, network topology, and

the interdependence of topics. In particular, optimal strategies surface that lever-

age indirect influence by exploiting cross-topic relationships, and in the presence of

competition, second movers gain a strategic edge. This work provides practical in-

sight for designing self-regulating environments in polarized societies by strategically

disseminating information. The implications of this research range from political

campaigns, public health messaging, and ethical information diffusion.
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Chapter 1

Introduction

Motivations

How To Win Friends and Influence People by Dale Carnegie has been the prophecy

on how individuals win friends and influence people for decades [9]. What about on a

larger scale – how to win nodes and influence networks? Answering this question re-

quires analysis on opinion dynamics and strategies for influence maximization. With

individual interactions reaching unprecedented scales in light of technological innova-

tion and social media dependence, connectivity is no longer restricted to physical dis-

tance causing opinion formulation to become more complex. Additionally, Bohn et al.

estimate that individuals are exposed to more than 100,500 words corresponding to

34 gigabytes of information daily [6]. The surplus of data requires extensive need for

decision on what information to accept– this often causes decision paralysis [2]. Thus

knowledge of optimal strategies that exert one’s influential dominance, persuading

an adoption of ones stance, has attracted special attention [29][10][11][24][7][36][31].
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Moreover, because opinions and behavior potentially threaten global issues (i.e. war,

climate change, vaccinations, etc.) and impact essentially every system we attempt

to measure (political, economic, social, etc.), comprehending what structures im-

pact opinion dynamics is crucial. Furthermore, while true broadly but especially

in the United States, polarization on issues has significantly increased– primarily

with political opinions. Pew Research Data shows that on average, Democrats and

Republicans are farther apart ideologically in the past three years than any time

in the last 50 years [13][8]. With the Vanderbilt Unity Index (VUI)[37] predicting

polarizing trends to continue, analyzing opinions shift that lead to extreme views is

relevant to consider why this emerges and when this may actually be optimal.

1.1 Problem Statement

In an increasingly polarized and information-saturated society, individuals are con-

stantly exposed to competing influences making opinion formation both complex

and dynamic. While classical models like DeGroot[12] and Freidkin-Johnsen[16][15]

capture internal opinion dynamics they fail to capture the role of external influences

that strive to shape network-wide opinions. Furthermore, research that inspects opti-

mal strategies for agents outside of the network seeking to maximize influence under

game-theoretic frameworks is limited. Moreover, real-world opinions rarely exist in

isolation or are independent and instead are often influenced by each other, yet ex-

isting models additionally lack this dimension. We argue that analyzing opinion dy-

namics by considering extensions to base models like DeGroot and FJ is foundational
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to understanding almost all systems (political, economic, social, etc.). Therefore, ex-

tending these models to represent information spread under current technological

and social environments helps to accurately characterize systems that opinions and

behavior impact. As such, we’re seeking to answer the following questions:

1. What strategies are optimal for an external agent to maximize their influence

over a population?

2. How does interdependence between topics affect optimal strategies?

3. Can we create self-regulatory environments by disseminating information in a

strategic way?

Using complex networks through graphical methods to capture social dynamics,

this research focuses on analyzing competitive diffusion over networks to understand

how identity, behavior, and opinions evolve in response to external influences. By

developing robust models that capture the dynamics of behavioral changes given

an outside intervention, we offer insights into systems that exhibit variability and

unpredictability due to the randomness of individual behaviors. This research ex-

plores both the dynamics of opinions and optimal strategies for a maximized global

influence.

The paper is structured as follows. Chapter two discusses the existing models we

use as a basis for our research and relevant literature that helps formulate our many

extensions. Chapter three introduces the methodologies including the data used in

conducting our research. Additionally, we define preliminary terms, variables, and

notation necessary for understanding our model. Chapter four defines our model

3



with only one external player and then extending to a two player model. Chapter

five outlines numerical results under both our one-player and two-player models. Re-

sults are presented in the following steps: first under a small finite example using

arbitrary parameters, then modeling over the General Social Survey dataset [20].

Finally, in chapter seven, we discuss the significance of our numerical results, pro-

viding conclusions on optimal strategies, opinion dynamics, and the structures that

influence both. Here we further outline limitations, and future extensions to our

research.

By bridging finite formulations theoretically and based on data, this research

aspires to uncover principles that govern opinion dynamics and influence maximiza-

tion in complex, interconnected systems. This research serves to benefit institutions,

companies, and government entities that desire to exert maximum influence over

populations with minimal effort. Applications of this include marketing, campaign-

ing, and the establishment of a potentially self-regulating ecosystem in which the

information-releasing agent selects the best initial node and message and as a result,

the amount of effort needed to popularize an opinion is minimized. Think about

wanting to encourage people to get vaccinated; is it possible for the population to

come to that conclusion themselves by strategically releasing information? Or what

about wanting to popularize a social or political movement? Running for president

soon and want to gain popularity? This paper will offer insights to these types of

questions. As an illustrative example, consider Bob trying to influence Alice and her

friends to favor vanilla ice cream. Should Bob tell Alice directly, her best friend, or

her parents and, what should Bob tell them?

4



Chapter 2

Opinion Dynamics Models

2.1 Literature Review

The study of influence in networks has evolved through multiple conceptual frameworks–

from early models of information diffusion to sophisticated game-theoretic and mul-

tidimensional dynamics. To lay the foundation of our research, we review literature

that has inspired our formulation of opinion dynamics and shifting behavior. Specifi-

cally investigating these dynamics under an environment with external agents aiming

to maximize their influence without being embedded in the network structure them-

selves.

2.1.1 Theoretical and Conceptual Frameworks

Homophily has been a leading area of study in understanding how individuals within

a network contribute to community structures. Specifically, homophily is the prin-
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ciple that breeds connections, supplying a theoretical ground for how influence is

spread[26]. Researchers have stipulated that social influence and homophily often

co-occur, making the separate study of them challenging[26]. Thus, a nuanced un-

derstanding of homophily is necessary for our research.

Khanam et al. discuss homophily and its implementation to predict link connec-

tions among individuals within a network [26]. The researchers introduce methods to

compute links, referring to the Latent Dirichlet Model (LDA), which associates links

of a document’s topic distribution between people discussing related topics [26][5].

The study showed that connectivity among individuals is related to the distribution

of topics [26]. This means that similarities in topics discussed or opinions on specific

topics can be used to predict links between individuals. This type of prediction is

useful when modeling social media networks where links may not be explicit[26].

To describe cascading dynamics, research[40][17] has introduced threshold models.

These models require that for a non-adopting node to adopt new information, a frac-

tion of their neighbors must exceed a global threshold[28][1]. Threshold models have

been considered under static networks, and more recently, Min et al. have proposed

co-evolving dynamics[30].

The theoretical foundations of homophily have motivated conceptions of threshold

and cascade effects in networks. Information cascades outline a structure for how

information is diffused, including mechanisms used to adopt information[40]. Much

research has been conducted to model and learn structures of information cascades

from large to granular networks[40]. Recent work has also focused on contextualizing

this framework on modeling information spread on social media[40]. To analyze

6



behavior on diffusion thresholds, López-Pintado [29] provides a dynamic sampling

process that shows how visibility and information levels jointly determine whether

behaviors become endemic or fade out.

Simultaneously, Borodin et al. extend threshold models to incorporate competi-

tive diffusion[7]. The researchers use the well-known greedy (1− e−1) approximation

for maximizing set functions[7]. They further show how competitive influence models

are NP hard to achieve an approximation better than the square root of the optimal

solution[7].

2.1.2 Structural and Stochastic Analyses of Diffusion

Parallel to theoretical frameworks of information diffusion, graph theorists have con-

tributed to our understanding of network connectivity and its relational impact on

diffusion. For instance, Erdos, Palmer, and Robinson[14] studied local connectivity

thresholds in random graphs, establishing critical conditions under which influence

can reliably propagate. Recently, researchers such such as Lelarge integrated cascade

theories to analyze probabilistic models on random networks[28].

These probabilistic models laid the foundation for viewing networks as random

bases for diffusion. This view is expanded on by Gyftopoulos et al.[18] in computa-

tional studies modeling DeGroot influence processes as Markov Decision Processes

in order to verify influence strategies.
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2.1.3 Foundational Models of Influence and Opinion Dy-

namics

Building on the theoretical understanding of influence in networks, numerous math-

ematical models have been developed to describe opinion dynamics. The DeGroot

model [12] introduced a simple averaging process where agents iteratively adjust their

opinions by taking a weighted average of neighboring views. While sleek, DeGroot

assumes full convergence and thus is unrealistic to describe mechanisms for persis-

tent disagreement. Further, this model assumes that individuals forego any initial

opinion and simply update as the weighted average of their neighbors, presenting

another oversimplification.

To address this, the Freidkin-Johnsen (FJ) model [16][15] introduces stubborn

agents that retain bias toward their initial opinion. In doing so, equilibrium states

with persistent disagreement are possible. The FJ model has become foundational

for modeling opinion formation, providing realism, and analytical traceability.

2.1.4 External Sources and Game Theoretic Formulations

While early models assumed endogenous network influence, recent work considers

agents seeking to influence networks as external entities. As a direct extension of

threshold cascades, Jafari et al. extend linear threshold models to incorporate com-

petitive diffusion [24]. They model individuals as heterogeneous and introduce op-

timal message selection in addition to node selection for influence maximization. A

study by Out et al.[33], incorporates external biased media sources to the FJ model,

8



exhibiting how persistent directional influence can be exerted. Similarly, Stella et

al.[35] used mean-field game models to capture the interaction between stubborn

agents and the general large population.

The strategic dimensions of influence have been explicitly formulated in a se-

ries of game-theoretic papers. Similar to[24], Irfan et al.[22] proposed a framework

where two players compete to maximize influence by targeting specific nodes. Their

research highlights optimal strategies’ sensitivity to budget constraints, target selec-

tion, and network topology. Further, Jackson et al. examine how payoff structures

and strategic complementarities affect equilibrium behavior in networks[23]. These

models shift the focus from purely internal dynamics to the strategic role of external

actors, an area that aligns directly with the current research.

2.1.5 Multidimensional and Interdependent Opinions

Real-world opinions are rarely uni-dimensional. Several recent contributions have

tackled multidimensional opinion dynamics, where agents simultaneously hold beliefs

over interrelated topics. Parsegov et al.[34] extended the FJ model to interdependent

vector-valued opinions, incorporating cross-topic influences that reflect real-world

belief systems in the multi-issue dependence structure (MiDS) matrix. Noipitak

et al.[32] further explored such couplings through modified DeGroot-style models,

demonstrating how structural interdependencies affect convergence. Such complexity

also gives rise to cross-issue cascades, where influence on one dimension spills over

into others, providing promising potential for indirect influence strategies.
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2.1.6 Our Contributions

Though research has developed robust models to measure opinion dynamics under

different settings, relatively few studies have explicitly optimized influence strategies

for external agents in settings with:

• Internal agents holding multidimensional, interdependent opinions,

• Networks exhibiting threshold-based or nonlinear response behaviors,

• Indirect influence strategies,

• And external actors choosing when, where, and whom to influence.

This gap motivates the current research; to develop and analyze optimal strate-

gies for external influencers seeking to maximize their impact over evolving opinion

networks, under realistic constraints and agent behavior. Therefore in our research

we develop a model with four key extensions to the traditional FJ [16] [15], De-

Groot[12], and modified linear threshold models [24].

1. First, we extend our model to multiple dimensions, allowing opinions to be

represented by L dimensional vectors as seen in section 3. This extension is

similarly seen in the papers[34][32][19].

2. Secondly, rather than relying on their initial opinion at t = 0, which mod-

els stubbornness and retainment of one’s initial opinions as framed in the FJ

model[16][15], we use an individual’s opinions at t − 1. By doing this, we
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allow individuals’ opinions to change more dynamically, arguing that individu-

als don’t necessarily recall their opinions at conception but rather retain their

opinions they held prior to an intervention that challenges them to change.

3. Third, by measuring an individual’s opinion as the weighted average of their

opinion at t − 1, their neighbors, and an external influence, we’re able to re-

alistically model how an opinion is influenced by multiple sources (neighbors

and influencing agents). This may be beneficial when inspecting if varying the

weights contributes to the convergence of opinions

4. Fourth, motivated by Parsegrov et al. and their multiple influence decision

matrix (MiDs)[34], we consider the interdependence of topics. Using statisti-

cal methods to measure the interdependence of topics, we propose a matrix,

C, defined in section 3. This provides significant conclusions related to how

optimal strategies may implore indirectly targeting an opinion via one highly

related

11



Chapter 3

Methodology

To conduct our research and develop our extensions, we use the linear threshold

model developed in[24] and FJ model[16][15] as base models for our extensions. In

particular, we generalize the model in[24] to a multidimensional setting, enabling a

more realistic representation of opinions across multiple interrelated topics, following

the approach in[34]. We refine the update rule in Section 4.1 to reflect principles

from the FJ model, allowing us to accurately model the neighboring influence on an

individual’s opinions. Topic interdependence is captured through a coupling matrix,

similar to that used in[34].

Our extensions are structured around the model developed in[24] leveraging its

inclusion of competitive external influence. Our multidimensional and competitive

enhancements yield more realistic predictions for optimal strategies employed by

external actors attempting to assert their influential dominance on a network. These

extensions on this model offer realistic measures of optimal strategies for eternal

12



influencers attempting to assert their influential dominance on a network.

We test our model through computational simulations using Python, first on

synthetically generated data, and subsequently applying it to real-world data from

the General Social Survey (GSS)[20]. This dual approach enables us to identify key

diffusion patterns and validate our theoretical findings. In the following sections, we

describe the methods of our modeling setup and initialization procedure.

3.1 Preliminaries and Notation

Lookup

For quick access, we define the terms and variables used in this research in Table 3.1
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Preliminaries and Notation

Term/Variable Notation Definition

Players Pk, k ∈ R External players seeking to maximize influence over

the population

Node/ Individuals Ni, i = 1, . . . , N , N ∈ R Agents par of the internal network

Graph/Network G = (N,E) N is the set of nodes, E is the set of edges

Topics L ∈ R Number of topics measured (dimensionality of space)

Time t ≥ 0, t ∈ R Time variable

External Influence Weight κ ∈ [0, 1] Weight placed on influence of external agents

Neighbor Influence Weight γ ∈ [0, 1] Weight placed on influence of neighboring nodes

Message Propagation δ ∈ [0, 1] Propagation parameter controlling to whom neighbor

j sends a message

Sociability β ∈ [0, 1] Sociability parameter

Decay Rate λ ∈ [0, 1] Controls how quickly influence decays

Forwarding Threshold θhigh ∈ [0, 1] Upper threshold for forwarding a message

Acceptance Threshold θlow ∈ [0, 1] Lower threshold for accepting a message

Topic Interdependence C ∈ RL×L Interdependence matrix across the L topics

Neighbors of Node i N(i) Set of neighbors of node i

Neighbor j j ∈ N(i), j ̸= i A neighbor j of node i

Link Connections wlink,i,j ∈ [0, 1] Measures the level of connection between individual i

and j

Normalization Factor Zi =
∑

j∈N(i)wlink,i,j Normalization factor for weights from neighbors of

node i

Alignment Score Alignmenti,k Measures alignment between node i and player k

Vector of Opinions Al
i(t) ∈ RL×1 Stores opinion αl

i(t) ∈ [−1, 1] on each l topics for in-

dividual i

Vector of Messages T l
k ∈ RL×1 Stores messages on each l ∈ [−1, 1] topic for player k

Table 3.1: Variables and notation used in our opinion dynamics model
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3.2 Initial Setup

To construct our network, G we calculate the probability of connection by measuring

the alignment between individuals’ initial opinions, Al
i(t). We use this method of

predictive link connectivity from theories of homophily[27][26] and research providing

reasonable evidence to the validity of this prediction method[26][5]. Specifically, this

is done using the kernel function:

∥Al
i(t)− Al

j(t)∥ (3.1)

Explicitly, we define the probability of a connection between two nodes (existence

of an edge) as:

pi,j = exp

(
− 1

2λ
∥Al

i(t)− Al
j(t)∥2

)
(3.2)

where ∥.∥ is the L2 norm and λ as defined in Table 3.1.

The strength of the connection between nodes (the edge) is additionally dictated

by the alignment of neighboring nodes’ opinion vectors.

wlink,i,j = f
(
∥Al

i(t)− Al
j(t)∥

)
(3.3)

represents the strength of connection for neighboring nodes i and j and f(·) is a

decreasing function. This is intuitive because as the distance between the opinions

of two nodes increases, the connection between them decreases. The more aligned
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the nodes i and j are in opinions, the stronger wlink,i,j. Explicitly we choose,

wlink,i,j = exp
(
−∥Al

i(t)− Al
j(t)∥

)
(3.4)

To further initialize our network structure, we make the following assumptions:

Assumption 1: The network is undirected

Assumption 2: At time t, we observe the static opinion of each node i for all l

topics, and the vector opinions, Al
i(t) is updated in discrete time steps.

Our set of players can be represented as Pk = (P1, P2) for two external players,

similar to Jafari’s paper[24]. To model the competitive dynamics of these players we

make additional assumptions:

Assumption 3: External Players Pk seek to maximize their influence over G (the

network). All Pk are aware of each individual i’s initial opinions on l topics.

Assumption 4: The players are seeking to influence the individuals’ opinion on the

same topic but in opposing ways

Assumption 5: Players can only target one topic and node i at t = 1

For Bob, this means he can only tell Alice, her friends, or her parents his message on

favoring vanilla ice cream but cannot tell all of them at once. Additionally, Tom may

want to influence Alice and her friends ice cream preferences as well, but instead of

pushing a pro-vanilla agenda, Tom advocates for chocolate ice cream. Numerically

Bob’s push to vanilla can correlate to a push towards positive 1 on the topic of ice

cream preference while Tom pushes to negative one for chocolate ice cream.

To optimize influence each player has two choices:

Choice 1: What message to send into the network
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Choice 2: Where (what node) to being the initial diffusion of the message

3.2.1 Defining Parameters

To measure the initial opinions of individuals in the network and the magnitude of

players messages on each l topic we define the structure of Al
i(t) and T l

k [24]. At time

t = 1, 2, ..., T

Al
i(t) = [α1

i (t), α
2
i (t), α

3
i (t), ...., α

L
i (T )] (3.5)

represent the opinions of individual i on each l topic as an L-vector. Each αl
i(t) is

the individual opinion on topic l at time t and is ∈ [−1, 1]. Similarly,

T l
k = [t1k, t

2
k, ..., t

L
k ] (3.6)

is and L vector of messages sent by each player. Each tlk represents the message from

player k on a specific topic, l and is ∈ [−1, 1].

Alignmenti,k dictates how well aligned the opinion of node i is with player k′s

message where

Alignmenti,k = βk ·
(
1− ∥T

l
k − Al

i(t)∥
2
√
L

)
(3.7)

This controls the diffusion of a message where the more aligned Al
i(t) and T l

k are, the

more likely a message is propagated.

To demonstrate interdependence between topics we let
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C =


cl,l cl,l+1 ...cl,L

cl+1,l cl+1,l+1 ...cl+1,L

...

 (3.8)

where

C ∈ RL×L

Values cl,l represent a topic l′s influence on itself while, cl,l+1 represents topic l′s

influence on topic l+1. With C we’re able to inspect how changing one opinion may

affect shifts of other opinions and how that alters optimal strategies for influence.

Our construction of Alignmenti,k is motivated by similar developments in Jafari’s

paper[24]. However, we adapt to a model that focuses on the node’s alignment solely

to the message rather than the players themselves[24]. We do this because under

current social environments where information spread is rapid via technology the

isolation for the source of a message has become challenging. Thus, the change of

opinions have become primarily based on an individuals alignment with the message

itself.

Additionally, the extension of existing opinion dynamic models[24][12][16] to mul-

tidimensional is inspired by Hazla and Parsegov’s research[19][34] where similar ap-

proaches are taken. The definition of matrix C is further motivated by Parsegov’s

inclusion of a multi-issues dependence structure (MiDS) matrix[34]. These coupled

extensions provide a more realistic approach to traditional opinion dynamic models.

After developing our modeling algorithm in Sections 4.1 and 4.2, we run simulations

when only 1 Player is present and then extend to 2 Players. In doing so, we’re able
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to understand specifically how competition shifts optimal strategies. Additionally,

we construct two different networks, G for arbitrary data and real-world data and

keep G for each form of data consistent overall simulations. In doing so, we’re able

to keep node metrics consistent across all simulations (respective of the data being

used) to analyze potential changes in node selection with and without competition

present.

We run simulations in Python code using parallel processing to speed up run-

time. In our code we let simulations continue until influence can no longer propagate,

reflecting unrestricted time-steps. This offers important insight to measure potential

convergence or level of effort exerted to influence a network.

3.3 Arbitrary Data

To measure the optimal strategies of players in our probabilistically connected net-

work, G we first experiment with arbitrary data. Doing this gives us the basis for

understanding notable trends that, if consistent with real data, present viable con-

clusions.
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Table 3.2: Initialized parameters for our model used for all arbitrary simulations

Parameter Value

Number of nodes (N) 50

Number of topics (L) 3

Socialization parameter (βi) 1

High threshold (θhigh) 0.7

Low threshold (θlow) 0.3

Propagation threshold (δ) 0.5

Influence decay parameter (λ) 0.5

Table 3.2 depicts how the parameters are initialized. We choose Al
i(t) for each i

randomly from a uniform distribution for values between [-1,1]. For the Players we

choose T l
k in the following steps:

1. Choose the topic the Player is targeting

2. Send a polarizing message in the index of T l
k that corresponds to the topic

chosen in step 1

For example if we consider three topics, L = 3 and topic 1 represents ice cream

preference, Bob influencing towards a vanilla preference would send the message:

TL=3
1 = [1, 0, 0] (3.9)

If Tom decides to challenge Bob, advocating for a chocolate ice cream preference

20



then following Assumption 4, Tom sends the message:

TL=3
2 = [−1, 0, 0] (3.10)

3.4 GSS Data

To validate the trends observed from simulations using arbitrary data, we test our

model using the General Social Survey (GSS)[20], specifically using longitudinal data.

GSS is a national survey that measures the attitudes and behaviors of adults in the

US taking place annually or biannually since 1972 [20]. We extract data from the

GSS longitudinal panel study from 2018-2020. In this study, the same adults are

surveyed once in 2018 and then again in 2020 on the same/similar questions from

the initial survey in 2018. This measures changes in attitudes and behavior over

two years, providing use when measuring how changes in opinions on different topics

move together. The initial dataset collects data on N = 2, 347 participants.

The surveys are administered either over the phone or through an online platform

and are offered in both English and Spanish. Along with individuals’ opinions on top-

ics ranging from same-sex marriage to views on federal funding, the dataset provides

individuals’ demographic information. This can be useful in analyzing whether there

are significant trends among demographic groups pertaining to influence receptivity.

For the purposes of this research, we focus on three topics present in the dataset:

affirmative action, gun permits, and political party affiliation. These topics are

measured in the survey with raw values shown in Table 3.3.

We clean the dataset by dropping individuals with NA values for any of these
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topics in addition to ones measuring demographic features for future research. We

remove individuals who responded to Political Party with a raw value of 7 (Other

party) because we’d like to confine results to minimal ambiguity in opinions. To

ensure opinions remain ∈ [−1, 1] we normalize the raw values which is also shown in

Table 3.3:

Table 3.3: General Social Survey (GSS) data used in our research with original values
from the dataset normalized and the mappings of what the values mean

Topic Raw Value Normalized Value Meaning

1: Affirmative Action

1 1.00 Strongly favors

2 0.33 Not strongly favors

3 -0.33 Not strongly opposes

4 -1.00 Strongly opposes

2: Gun Permits
1 1.00 Favor

2 -1.00 Oppose

3: Political Party

0 1.00 Strong Democrat

1 0.67 Not very strong Democrat

2 0.33 Independent, close to Democrat

3 0.00 Independent (neither, no response)

4 -0.33 Independent, close to Republican

5 -0.67 Not very strong Republican

6 -1.00 Strong Republican

We chose these topics because we believe they have a strong enough relation-

ship that allows us to measure their interdependence for our construction of C. To

construct C we calculated the covariance between topics from our cleaned data us-

ing opinions captured in 2018 and then again in 2020. The resulting matrix with

i = j = 1 = Affirmative Action, i = j = 2 = Gun Permits, and i = j = 3 = Political
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Party is: 
0.92 0.02 0.06

0.01 0.94 0.05

0.17 0.23 0.62

 (3.11)

Our final dataset consists of N = 282 individuals that are represented as nodes

in our network. This decreased value of N is a result of additionally cleaning for the

demographic information.

yearid affrmact 1b gunlaw 1b partyid 1b affrmact 2 gunlaw 2 partyid 2

20180001 -1.00 1.00 -0.67 -1.00 1.00 -1.00

20180006 0.33 1.00 0.33 -0.33 1.00 0.33

20180011 -1.00 1.00 -1.00 -1.00 1.00 -1.00

20180016 -0.33 1.00 0.00 -1.00 1.00 0.00

20180063 0.33 1.00 1.00 1.00 1.00 1.00

Table 3.4: First five entries of the GSS dataset cleaned and normalized for values
∈ [−1, 1]

First five entries of the GSS dataset cleaned and normalized for values ∈ [−1, 1]. yearid is the
unique code that tracks an individual. affrmact 1b, gunlaw 1b, and partyid 1b are the opinions on
Affirmative Action, Gun Permits, and Political Party in 2018. affrmact 2, gunlaw 2, and partyid 2
are the opinions on Affirmative Action, Gun Permits, and Political Party in 2020.

Using the opinions of each individual, we construct their Al
i(t) opinion vector

where

Topic 1 → Affirmative Action

Topic 2 → Gun Permits

Topic 3 → Political Party

Before running simulations on the data, we inspect the initial alignment of the

population as it may describe our results and be important for optimal strategy

considerations. To gauge this, we sum the amount of individuals who share the same
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initial opinion for each topic. Results show that the initial network is calibrated in

the following way:

1. Topic 1 (Affirmative Action): Majority of the population aligned to -1,

meaning they are against Affirmative Action

2. Topic 2 (Gun Permits): Majority of the population aligned to +1, meaning

they favor Gun Permits

3. Topic 3 (Political Party): Majority of the population aligned to 0/+1,

meaning they are Independent, leaning Democratic

With arbitrary and real data[20] we can compare consistent trends that invoke

significant insight. Specifically it offers robust knowledge on how dynamics are im-

pacted by external interventions, what strategies are optimal for influence maximiza-

tion, and what characteristics of a network impact both and are therefore important

to consider. The full explanation of our modeling algorithm and results from simu-

lations are presented in the preceding chapter.
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Chapter 4

The Model

To define our model as mentioned in Section 3.2.1, the diffusion of T l
k and the spread

of P ′
ks influence depends on how well aligned T l

k is with the opinions of an individual,

Al
i(t) at the time of diffusion. We formally define the Acceptance and Forwarding

algorithms below.

4.1 Acceptance Algorithm

1. If

Alignmenti,k > θlow (4.1)

node i accepts player k′s message (T l
k) and becomes active. Strong alignment in-

creases the probability that a message is accepted. From Assumption 5 at t = 1

only one node can be activated, forcing Players to optimize for the best initial node

to cascade influence.
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Given node i accepts and is activated

Al
i(t + 1) = (1− κ− γ)Al

i(t) + CκT l
k + γ

∑
j∈N(i)

wlink,i,j

Zi

Al
j(t) (4.2)

represents how i′s opinions, Al
i(t), are updated with κ and γ representing the weight

of external influence and neighbor influence respectively 3.1. We can also represent

Equation 4.2 in matrix form:

Al
i(t + 1) = DAl

i(t) + CκT l
k, (4.3)

where D is the weighted adjacency matrix and:

Dij =


(1− κ− γ) if i = j,

γ
wlink,i,j

Zi
if i ̸= j.

(4.4)

This matrix D is also row-stochastic.

Definition 4.1.1: A matrix D is said to be row-stochastic if:

• All elements are non-negative: Dij ≥ 0.

• Each row sums to 1: ∑
j

Dij = 1, ∀i.

Proof. of the row-stochasticity of matrix D :

To verify if our matrix D is row-stochastic, we sum its entries row-wise:
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∑
j

Dij = (1− κ− γ) + γ
∑

j∈N(i)

wlink,i,j

Zi

. (4.5)

Since Zi =
∑

j∈N(i) wlink,i,j, it follows that:

∑
j∈N(i)

wlink,i,j

Zi

= 1. (4.6)

Thus:

∑
j

Dij = (1− κ− γ) + γ · 1 = 1. (4.7)

Since all elements of D are non-negative, this confirms that D is row-stochastic

by Definition 4.1. This property guarantees that opinion propagation follows a prob-

abilistic interpretation and contributes to potential formulations of stability of the

opinion formation process [34].

4.2 Forwarding Algorithm

After node i accepts and becomes active, it then decides whether to forward player

k′s message to its neighbors j ∈ N(i).

2. If

Alignmenti,k > θhigh (4.8)
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node i decides to forward the message T l
k but only to neighbors j, ∀j ∈ N(i) that

satisfy:

wlink,i,j > δ (4.9)

This means, if the link strength calculated by Equation 3.3 is strong enough for

interactions to occur, the message is diffused into node j. The diffusion of the

message continues at t ≥ 2 following the Acceptance Algorithm and Forwarding

Algorithm.

The structure of these algorithms reflects the realistic behavior of homophily.

Individuals don’t readily interact (and forward information) unless they share similar

beliefs [27][26]. This dynamic describes much of what models like Hugh’s paper

discusses occurs in our natural world [21].
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Figure 4.1: Flowchart of the opinion update process.

Flowchart of the opinion update process. Node i accepts a message Tk from external
player Pk if the alignment exceeds the threshold θlow, then updates its opinion using
a weighted combination of its past opinion, the message, and neighbors’ views. If
alignment exceeds θhigh, the node forwards the message to neighbors with sufficient
link strength wi,j.

Further, individuals’ own opinions reflect a combination of their neighbors’ views

while maintaining their original opinions[16][15]. Friedkin Johnsen’s (FJ) model

captures this, extending the DeGroot model, which only represents an individual’s

opinions as the weighted average of their neighbors [12][16][15]. Neither model, how-
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ever, considers the impact of external influence on an individual’s opinion, thus, our

model again provides a key extension.

4.2.1 One Player

To capture the effects of this external influence on opinions, we first consider only

one external Player. The external Player maximizes influence on the target topic by

finding the optimal node and message at t = 1. We define the Player’s payoff as

Jk =
∑
i

[
αl∗

i (T )− αl∗

i (0)
]

(4.10)

which is the sum of each individual’s opinion shift toward the Players’ direction of

influence. Here, l∗ represents the targeted topic, and T is the last time step, when

influence no longer propagates and diffusion ends.

The optimization problem for an optimal node i and message T l
k that maximizes

a Player’s payoff in the +1 influence direction is:

max
i∗,T l∗

k

Jk =
∑
i

[
αl∗

i (T )− αl∗

i (0)
]

(4.11)

subject to:

tlk ∈ [−1, 1] (4.12)

Where, i∗, T l∗

k are the optimal choices of node and message respectively. When the
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Player’s influence direction is -1, the objective shifts to:

min
i∗2,T

l∗
2

J2 =
∑
i

[
αl∗

i (T )− αl∗

i (0)
]

(4.13)

with the same constraints 4.12 but accounting for the negative direction.

The algorithm for simulating the 1-Player model is below, and the results are

discussed in Chapter 5:

1. Initialization

(a) Initialize all the parameters

(b) Populate opinions Al
i ∈ [−1, 1] for each node i and each topic l.

(c) Construct G connecting nodes if pi,j > a random number from a uniform

distribution ∈ [0, 1].

(d) Compute initial link weights wij for all edges.

2. Optimize Initial Strategy

(a) Solve for the optimal node i∗ and message vector T l∗
k that maximize the

total influence on the target topic l∗.

(b) Let (i∗, T l∗
k ) be the optimal result.

3. Simulate Opinion Diffusion (for t = 0, 1, . . . , T − 1)

(a) At t = 1:

i. Compute the alignment of i∗ with T l∗
k .

ii. If i∗ accepts the message based on θlow:

A. Update opinions: Al
i ← DAl

i + CκT l∗
k .

B. Recalculate link weights for i∗.

C. Check if i∗ forwards the message based on θhigh.
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D. For each neighbor j of i∗, forward the message to j if wij > δ.

(b) For t ≥ 2:

i. For each active node i:

A. For each neighbor j:

B. Compute alignment of j with T l∗
k .

C. If j accepts the message based on θlow:

D. Update opinions: Al
j ← DAl

j + CκT l∗
k .

E. Recalculate link weights for j.

F. Check if j forwards the message based on θhigh.

G. For each neighbor j′ of j, forward the message to j′ if wjj′ ≥ δ.

(c) Continue diffusion from (b). Stop if no new nodes accept or forward the

message.

4. Compute Total Influence

(a) Sum the change in opinions on the target topic l∗ across all nodes.

5. Return Results

(a) Return total influence, optimal node i∗, and optimal message vector T l∗
k .

4.2.2 Two Player

Extending our model to include competitive diffusion, we consider a system with 2

external Players that mimics a Stackelberg game [38]. We fix the influence directions

of each Player to reflect Assumption 4 with Player 1 pushing to +1 and Player 2

pushing to -1.

Initially, all nodes are inactive, and Players can each only activate one node at

t = 1 (Assumption 5). When node i is contacted by only one of the two Players,
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the decision to accept follows from Section 4.1. However, if i receives a message from

both Players and the acceptance threshold is met, i

1. Computes the Alignmenti,k for each k Player, k = {1, 2}

2. Accepts the message of player k who has a higher Alignmenti,k (more aligned)

The decision to forward remains the same from Section 4.2.

Players take turns moving first, and the second mover optimizes their strategy

in response to the observed fixed strategy of the opposing Player. The optimization

problem for Player 1 and Player 2 respectively is:

max
i∗1,T

l∗
1

J1 =
∑
i

[
αl∗

i (T )− αl∗

i (0)
]

(4.14)

subject to:

tlk ∈ [−1, 1] (4.15)

min
i∗2,T

l∗
2

J2 =
∑
i

[
αl∗

i (T )− αl∗

i (0)
]

(4.16)

subject to:

tlk ∈ [−1, 1] (4.17)

The relationship between the payoffs of Player 1 and Player 2 is:

J2 = −J1 (4.18)

This model effectively depicts the dynamics of competition prevalent in society.
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For example, Bob and Tom are vying to maximize their influence on Alice and

her friends’ ice cream preferences in opposing directions. Bob pushes to positive 1

reflecting a vanilla preference while Tom pushes towards -1 for chocolate.

The algorithm for our 2-Player model is below, with the results discussed in the

following chapter.

1. Initialization

(a) Initialize all parameters

(b) Populate initial opinions, Al
i ∈ [−1, 1] for each node i and each topic l.

(c) Construct G connecting nodes if pi,j > a random number from a uniform
distribution ∈ [0, 1].

(d) Compute initial link weights wij for all edges.

2. Optimize Initial Strategies

(a) Fix P1’s initial node and message. Solve for P2’s optimal node i∗2 and
message vector T l∗

2 to optimize J2.

(b) Fix P2’s initial node and message. Solve for P1’s optimal node i∗1 and
message vector T l∗

1 to optimize J1.

3. Simulate Opinion Diffusion (for t = 0, 1, . . . , T − 1)

(a) At t = 1:

i. Players P1 and P2 send their messages T l∗
1 and T l∗

2 to their chosen
nodes i∗1 and i∗2.

ii. For each player Pk:

A. Compute alignment of i∗k with T l∗
k .

B. If i∗k accepts the message based on θlow:

C. Update opinions: Al
i∗k
← DAl

i∗k
+ CκT l∗

k .

D. Recalculate link weights for i∗k.

E. Check if i∗k forwards the message based on θhigh.
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F. For each neighbor j of i∗k, forward the message if wi∗kj
≥ δ.

iii. Resolve conflicts if both players target the same node by choosing
the message with higher alignment or randomly if alignments are
equal.

(b) For t ≥ 2:

i. For each active node i:

A. For each neighbor j:

B. Compute alignment of j with messages T ∗
1 and T ∗

2 .

C. If j receives and accepts only one message based on θlow:

D. Update opinions:Al
j ← DAl

j + CκT l∗
k .

E. If j receives both messages and accepts both:

F. Resolve conflict by choosing the message with higher align-
ment or randomly if alignments are equal.

G. Update opinions of j accordingly.

H. Recalculate link weights for j.

I. Check if j forwards the accepted message(s) based on θhigh.

J. For each neighbor j′ of j, forward the message if wjj′ ≥ δ.

(c) Continue diffusion at (b). Stop if no new nodes accept or forward the
message.

4. Compute Payoffs

(a) Calculate J1 and J2 = −J1 summing the change of l∗ across all nodes
and correcting J2 for influencing in the negative direction.

5. Return Results

(a) Return payoffs J1, J2, and optimal strategies (i∗1, T
∗
1 ), (i∗2, T

∗
2 ).
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Chapter 5

Numerical Results

In this chapter, we present the results of our simulations conducted under both the

1-Player and 2-Player models. Starting with arbitrary data in the 1-Player model, we

progressively expand to the 2-Player model, utilizing the General Social Survey (GSS)

data[20]. We will walk through these results step-by-step, highlighting the effects on

individual behavior and strategic trends of Players for influence maximization.

5.1 Arbitrary Data

Using the same graph, G, for our arbitrary simulations, the average node metrics

are:

• Average Degree = 21.28

• Average Clustering Coeff. = 0.52

• Average Degree Centrality = 0.43

• Average Betweenness Centrality = 0.0290
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5.1.1 One Player

Using the initial parameters as seen in Table 3.2 without considering the interdepen-

dency of topics, meaning Equation (4.2) doesn’t account for matrix C, we run 50

simulations and observe the following results:

Table 5.1: Simple Finite Results (1 Player Push to 1).

Topic Max Total
Influence

Optimal Node Optimal
Message

1: Affirmative
Action

17.22 14 [0.81 -0.24 0.71]

2: Gun Permits 16.46 17 [0.00, 1.00, 0.00]
3: Political Party 16.45 42 [0.00, 0.00, 1.00]

Table 5.2: Simple Finite Results (1 Player Push to -1).

Topic Max Total
Influence

Optimal Node Optimal Message

1: Affirmative
Action

14.04 23 [-0.99, -0.66, -0.81]

2: Gun Permits 13.54 46 [0.00, -1.00, 0.00]
3: Political Party 15.54 3 [-0.54, -0.08, -0.97]

In both scenarios, all Ni = 50 individuals in the undirected network are initialized
with parameters β = 1, θlow = 0.3, θhigh = 0.7, δ = 0.5 and connected via 3.2 with
λ = 0.5

In the absence of competition and without considering the interdependence of

topics, the optimal strategy for a Player is to send a polarizing message targeting

the topic of interest. For instance, when aiming to push the opinion toward 1, the

optimal message for the target topic is one that is close to 1 (or strongly positive).

However, the results also suggest that a mixed message strategy, where the mes-

sage does not focus solely on the target topic, yields the highest overall influence.

This implies that while it’s essential for the influencing agent to send a message that

is strongly aligned with their desired influence direction for the target topic, it is
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equally important not to overly concentrate the message on the target topic itself.

To evaluate our model’s parameter sensitivity on influence, we examine the effects

of incrementally increasing θhigh and δ. We focus on θhigh and δ since they dictate

the propagation and cascade of information. We increase these incrementally by

a factor of 0.1. As expected, these increases resulted in lower average influence in

both 1-Player scenarios. Notably, δ is presented to be more sensitive, causing a lower

diffusion of influence than θhigh. This implies that the alignment between individuals

plays a more critical role in influence than an individual’s alignment with the message

itself.

(a) Increasing δ by 0.1 (b) Increasing θhigh by 0.1

Figure 5.1: Incrementally increasing parameters when pushing to 1

(a) Increasing δ by 0.1 (b) Increasing θhigh by 0.1

Figure 5.2: Incrementally increasing parameters when pushing to −1
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Thus, an optimal influencing agent strategy involves:

1. Prioritizing messages that are strongly aligned with the desired direction for

the target topic

2. Ensuring that the message is not exclusively focused on the target topic but

rather considers a more balanced approach that allows influence to extend to

related topics

3. Focusing on inter-nodal alignment rather than solely aligning the message with

the optimal node

5.1.2 Two Player

To inspect how competition impacts optimal strategies, we extend our arbitrary

data simulations to our two-player model. Running 50 simulations under the same

assumptions and parameterizations, we observe:

Table 5.3: Arbitrary Data (2 Player, Player 1 Goes First).

Topic Player 1 Player 2

1: Affirmative

Action

Max Influence: 3.83 Max Influence: 9.17

Optimal Node: 17 Optimal Node: 1

Message: [-0.15, -0.08, 0.57] Message: [-1.00, 0.00, 0.00]

2: Gun Permits

Max Influence: 2.17 Max Influence: 6.08

Optimal Node: 3 Optimal Node: 49

Message: [ 0.33, -0.38, 0.15] Message: [0.00, -1.00, 0.00]

3: Political Party

Max Influence: 3.07 Max Influence: 10.54

Optimal Node: 42 Optimal Node: 3

Message: [ 0.09, 0.09, -0.54] Message:[-0.52, -0.70, -0.76]
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Table 5.4: Arbitrary Data (2 Player, Player 2 Goes First)

Topic Player 1 Player 2

1: Affirmative

Action

Max Influence: 8.27 Max Influence: 3.31

Optimal Node: 11 Optimal Node: 1

Message: [ 0.47, -0.11, 0.75] Message: [0.00, 0.00, -1.00]

2: Gun Permits

Max Influence: 6.23 Max Influence: 4.86

Optimal Node: 17 Optimal Node: 20

Message: [-0.39, 0.29, 0.52] Message: [0.02, 0.12, 0.11]

3: Political Party

Max Influence: 6.37 Max Influence: 5.16

Optimal Node: 42 Optimal Node: 33

Message:[0.23, 0.26, 0.91] Message: [-0.21, 0.15, 0.21]

In both 2-Player scenarios, all Ni = 50 individuals in the undirected network are
initialized with parameters β = 1, θlow = 0.3, θhigh = 0.7, δ = 0.5 and connected via
3.2 with λ = 0.5

We find that the player who moves second generally achieves higher influence

across all topics. This outcome can be attributed to the second player’s ability to

observe the first player’s strategy and then respond optimally. By adapting their

strategy based on the first player’s actions, the second player can capitalize on the

information already provided and make more effective moves, resulting in a higher

total influence. Another consistent finding is that mixed message strategies tend to

lead to higher influence. Suggesting that the threshold dynamics from our model

impact players’ strategies. This means that while targeting a topic, Players attempt

to produce a TL
k that is most optimal in alignment with initial opinions for a broader

cascade effect.
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5.2 GSS Data

To test if the results are consistent with real-world data, we use the GSS longitudinal

survey[20]. Maintaining the above assumptions, we run simulations in the absence

of the interdependence matrix. Then, to inspect how dependence between topics

influences optimal strategies, we consider the C matrix as in Equation 4.2. Before

beginning simulations, we describe key data from our network.

Table 5.5: Average Connection Probability Per Topic

Topic Average Probability

affirmative action 0.731862
gun laws 0.670030
party id 0.719685

The average probability per topic is measured by iterating over each pair of Ni and
computing the alignment via 3.1 on each distinct topic separately. Then, using 3.2
for the probability of connection for each topic, we average the results with the values
presented in the table above.

Calculating the average connection probability per topic reveals which topic the

majority of the population is most collectively aligned with, offering key insight into

network connectivity and potential cascade dynamics. that opinions on Affirmative

Action are most likely to create connections between individuals, followed closely

by opinions on Political Party affiliation. Notably, opinions on Gun Permits are less

likely to result in connections compared to the other topics. This suggests that topics

related to race and political identity, such as Affirmative Action and Political Party

affiliation, tend to foster greater opinion alignment and social connection compared

to topics like Gun Permits, which may be more divisive.

The higher connection probabilities for Affirmative Action and Political Party
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affiliation hint at the lower stubbornness of these topics, indicating that opinions on

these issues are more easily swayed or aligned within the network. In contrast, the

lower connection probability for Gun Permits suggests that opinions on this topic

are more polarized and potentially more resistant to change, making it a stubborn

topic that may require more targeted influence strategies.

These findings raise intriguing questions about the relationship between race-

based topics (i.e. Affirmative Action) and non-race-based topics (i.e. Gun Permits)

in fostering connections and shaping influence within a network. It appears that race-

related topics might more readily unite individuals, while non-race-related issues like

Gun Permits could require more effort to bridge divides. This insight will be valuable

as we proceed with simulating influence strategies on these topics, as understanding

the stubbornness of topics can guide more effective targeting and message crafting

in our simulations.

Additionally, using the same G for our GSS data simulations, the average node

metrics are:

• Average Degree = 101.00

• Average Clustering Coeff. = 0.54

• Average Degree Centrality = 0.36

• Average Betweenness Centrality = 0.0023

5.2.1 One Player

Using the probabilistically connected network and the initialization we had for the

thresholds and sociability parameters from Table 3.2, we run the 50 for both scenarios

below.
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1. Scenario 1: Outside player wants to influence opinions toward 1

2. Scenario 2: Outside player wants to influence opinions toward -1

Further, we consider each scenario under the environment where topics are treated in-

dependently when their interdependence is considered. Doing this provides evidence

as to how topic dependence shifts optimal strategies and when it’s leveraged.

Table 5.6: Finite Results GSS Data (1 Player Push to 1)

Topic Without C With C

1: Affirmative

Action

Max Influence: 111.10 Max Influence: 108.67

Optimal Node: 70 Optimal Node: 136

Message: [0.92, 0.85, -0.11] Message:[ 0.96, 0.58, -0.41]

2: Gun Permits

Max Influence: 35.73 Max Influence: 36.43

Optimal Node: 276 Optimal Node: 253

Message: [0.12, 0.97, -0.28] Message: [ 0.13, 0.97, -0.31]

3: Political Party

Max Influence: 68.23 Max Influence: 62.99

Optimal Node: 259 Optimal Node: 106

Message: [0.57, 0.89, 0.98] [0.42, 0.94, 0.86]
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Table 5.7: Finite Results GSS Data (1 Player Push to -1)

Topic Without C With C

1: Affirmative

Action

Max Influence: 24.28 Max Influence: 20.89

Optimal Node: 126 Optimal Node: 126

Message: [-0.98, -0.58, -0.56] Message:[-0.94, -0.37, -0.45]

2: Gun Permits

Max Influence: 120.25 Max Influence: 118.80

Optimal Node: 66 Optimal Node: 149

Message: [-0.13, -0.69, 0.39] Message: [-0.82, -0.54, 0.64]

3: Political Party

Max Influence: 65.78 Max Influence: 55.25

Optimal Node: 70 Optimal Node: 200

Message: [-0.19, 0.94, -0.99] [-0.94, 0.36, -0.90]

Maximal Influence

When topics were treated as independent, the maximum level of influence was gener-

ally higher across all topics. However, when intertopic dependencies were considered

and the Player pushed to +1, Topic 2 (Gun Permits) saw a slight increase in influence.

These shifts imply that the interdependence of topics adds complexity to the selec-

tion of optimal nodes and message vectors. This indicated that with dependencies,

influence strategies become more nuanced.

Optimal Topic:

• Topic 1 (Affirmative Action) was most influenced when the Player pushed the

opinion toward 1. This result makes sense, given that the network’s initial

status quo was aligned with a -1 view on Topic 1, leaving more room for

influence in the opposite direction.

• Topic 2 (Gun Permits) was most influenced when the Player pushed the opinion

toward -1. again, reflecting that pushing in the opposite direction of initial
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alignment offered more room for influence.

• Topic 3 (Political Party) showed a more balanced influence with relatively

similar levels of influence in either influence direction, likely due to a more

moderate initial alignment of the networks’ opinions.

Optimal Node

Indeed, when pushing to +1 or -1, the optimal node selection shifted with interde-

pendencies considered. Although pushing to +1 was still most influential on Topic 1

(Affirmative Action) in both cases, when we included dependencies, the Player opted

for nodes with higher degrees. The same is true for when the Player pushed to -1 and

Topic 2 (Gun Permits). On topics where the Player had less influence, respective of

their push direction, the Player focused on selecting a node with a higher clustering

coefficient. This indicated that when influence is harder to achieve, a Player priori-

tizes nodes with stronger local connections within their community. Beyond this, in

both directions of influence, the optimal nodes shifted to those more aligned with the

networks’ initial views in a particularly polarizing way. Specifically, optimal nodes

became ones with views of -1 for Affirmative Action and 1 for Gun Permits, matching

the initial status quo. This implies that with intertopic dependencies, optimal nodes

are those that can leverage existing polarization to drive influence.

Optimal Message

The presence of dependencies provided fascinating insights on the optimal message.

When targeting a topic in the same direction that the initial networks’ opinions agree

with, Players sent a message in the opposite direction for a topic related to the tar-

geted one. This may initially seem to be a response to threshold requirements, but it

goes deeper. By sending an opposite message on a related topic, the Player pretends

to align with the opposing individual on the related topic. This effectively persuades
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individuals to accept their influence direction on the target topic. The Player lever-

ages indirect influence, subtly manipulating individuals by aligning themselves on

related topics. Further on topics that the initial networks opinions were moderate,

the optimal strategy for a Player was to increase the existing polarity on topics

that agreed with the Players influence direction. This suggests that capitalizing on

existing polarization helps persuade moderate opinions to your view. The message

strategy then indicates:

• Polarize topics where the network is already polarized (i.e. Topic 1 and Topic

2)

• Moderate the message for topics where there is potential to sway opinions in

the opposite direction

• Align with the status quo on topics that are already polarized and use these

to influence a topic that is not yet polarized

Figure 5.3: Average Influence Over All Topics for Both 1-Player Scenarios Without
C, Using GSS Data
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Figure 5.4: Average Influence Over All Topics for Both 1-Player Scenarios With and
With C, Using GSS Data

The average influence shows that pushing towards 1 generally leads to better

influence maximization across all topics. Notably, it achieves higher influence on

its least optimal topic (Topic 2) than pushing towards -1 does on its least optimal

topic (Topic 1). This could be attributed to the overall initial opinions favoring a

more positive view, with a slight influence from Topic 3, whose initial opinions are

moderate but slightly positive.

Overall Optimal Strategies The presence of intertopic dependencies funda-

mentally alters the optimal choices for influence maximization. With dependencies

considered, Players should make more strategic node selections, favoring ones with

higher degrees on topics where the Player is projected to gain the most influence.

Relatedly, prioritizing a higher clustering coefficient on topics where projected influ-

ence may be lower allows for a more widespread cascade. Finally, for node selection,

an individual aligned with the networks’ initial opinions on polarizing views is most

optimal.

For the message, leveraging indirect influence by deceiving individuals with align-
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ment on a related topic provided better results. Further, it’s optimal to polarize the

network on topics that already have a strong consensus to indirectly influence those

topics that are more moderate or undecided. Additionally, a Player found more

influence when using a mixed message strategy.

Results suggest that for effective influence maximization, a Player should

1. Capitalize on disagreement

2. Utilize polarizing messages on topics that already have a polarized consensus

3. Moderate messages on topics that are more neutral or undecided

5.2.2 Two Player

Introducing game-theoretic properties, we assume that Player 1 always sways opin-

ions toward 1– favoring Affirmative Action, supporting Gun Permits, and aligning

with the Democratic Party. Conversely, Player 2 always sways opinions toward -1–

opposing Affirmative Action, opposing Gun Permits, and aligning with the Repub-

lican Party. Conducting 25 simulations across the following two scenarios:

1. Scenario 1: Player 1 (Pushing to 1) goes first

2. Scenario 2: Player 2 (Pushing to -1) goes first

The following results are obtained:
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Table 5.8: Finite Results GSS Data (2 Player, Player 1 Goes First)

Topic Player 1 Player 2

1: Affirmative

Action

Max Influence: 82.14 Max Influence: 23.68

Optimal Node: 110 Optimal Node: 126

Message: [ 0.30, 0.55, -0.01] Message:[-0.90, -0.79, -0.71]

2: Gun Permits

Max Influence: 22.71 Max Influence: 39.66

Optimal Node: 116 Optimal Node: 70

Message: [0.00, 1.00, 0.00] Message: [-0.61, 0.20, 0.06]

3: Political Party

Max Influence: 30.11 Max Influence: 33.70

Optimal Node: 94 Optimal Node: 126

Message: [-0.23, 0.50, 0.91] [-0.92, -0.86, -0.73]

Table 5.9: Finite Results GSS Data (2 Player, Player 2 Goes First)

Topic Player 1 Player 2

1: Affirmative

Action

Max Influence: 95.71 Max Influence: 18.92

Optimal Node: 2 Optimal Node: 49

Message:[ 0.78, 0.69, -0.65] Message:[-0.83, -0.94, -0.56]

2: Gun Permits

Max Influence: 24.91 Max Influence: 80.68

Optimal Node: 176 Optimal Node: 200

Message:[-0.54, 0.98, 0.82] Message: [-0.15, 0.12, 0.01]

3: Political Party

Max Influence: 65.87 Max Influence: 27.40

Optimal Node: 192 Optimal Node: 278

Message:[0.35, 0.89, 0.98] Message: [-0.62, -0.97, -0.81]

Optimal Topic: Similar to what we saw with the 1-Player simulations, Topic 1

was the most optimal for Player 1, and Topic 2 was the most optimal for Player 2.

Topic 3, which was initially more moderate but leaning positively, was slightly more
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optimal for Player 1. This is intuitive because the status quo is moderately aligned

with +1, making it easier for Player 1 to influence Topic 3. However, Player 2 gains

more influence on Topic 3 when moving second. This indicated that Topic 3 is less

polarized and depends more on the strategies of each player.

Maximal Influence In general, the Player who moved second gained more in-

fluence over topics. However, Player 2 on Topic 2, which always has more influence,

saw more of an impact when moving first. This is attributed to the first-mover

advantage[25] where when a Player moves first, they set the initial conditions of

the game by pushing an agenda early. When Player 2 moves second, they’re forced

to respond to the optimal selections of Player 1, which inhibits potential optimal

strategies for Player 2. For topics that are polarized or have a clear initial network

alignment (i.e. Topic 1 and Topic 2), this advantage gives the first mover more room

to create a significant shift in the opinions of the network. This explains the lower

influence on Topic 2 for Player 2 when moving second.

Optimal Node: The optimal node varied based on multiple factors, including

the initial network opinions, which Player moved first, and the specific topic being

targeted.

• For Player 1: When moving first, consistently chose node 116 as the optimal

choice for targeting Topic 2. This is primarily because of the node’s high

clustering coefficient and its alignment with the network’s initial consensus on

Topic 2, which is polarized in the direction Player 1 is trying to influence. Node

116’s initial opinions align closely with Player 1’s optimal message for Topic 2,

facilitating a wider-spread influence cascade. This consistent choice over all 50

simulations explains why, in response, Player 2 experiences lower influence on

Topic 2 compared to when Player 2 moves first.
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• For Player 2: When moving second, Player 2 chooses node 126 as optimal for

Topic 1 and Topic 3. Node 126 aligns with the network’s consensus on Topic

1, which is polarized in Player 2’s direction of influence. Further, node 126

has a higher betweenness centrality, indicating that for Topic 3 where initial

opinions are moderate, a node with higher betweenness centrality is best to

sway individuals toward your view.

Optimal node selection trends allow us to observe that

• When influencing an opinion in the direction of consensus, the optimal node is

one that is polarized toward the influence direction. This is especially true if a

player moves first.

• For topics where the consensus is moderate or oppositely aligned with your

influence direction, choosing a node with higher betweenness centrality is op-

timal

Optimal Message: Strategies for the optimal message were heavily dependent

on the network’s initial alignment and polarization on the targeted topic:

• For topics where the network is initially aligned with the Player’s view, the

optimal strategy is to send a stronger, more polarizing message in the same

direction. This approach reinforces the network’s existing opinion, making the

influence more effective in solidifying the existing consensus. For example,

when the network was aligned with 1 on Topic 2, sending a polarizing message

in the same direction was optimal

• For topics where the network’s initial opinion is unaligned with the Player’s in-

fluence direction, the optimal strategy involves using indirect influence through
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the interdependence of topics. This leverages the interconnectedness of topics

to shift opinions indirectly toward the Player’s desired direction. For example,

in the case of Topic 1, where the network was initially aligned with -1, Player

1 used a moderate message to shift the opinion toward 1, while also exploiting

the influence of related topics

Analyzing the magnitude of a message for each topic compared to the influence

gained in both scenarios corroborates our previous analysis.

Figure 5.5: Message v Influence (2 Player, Player 1 Goes First)

Figure 5.6: Message v Influence (2 Player, Player 2 Goes First)

We parsed the optimal message vector targeting each respective topic for each Player
in our 2-Player model. Message0 reflects the message sent on Topic 1 (Affirmative
Action), Message1 reflects the message sent on Topic 2 (Gun Permits), Message2
reflects the message sent on Topic 3 (Political Party). We plot the value of the
message in the target topics index versus its magnitude of influence.
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When Player 1 moves first, the strategies of both players tend to be more sta-

ble, likely because the network’s initial alignment is slightly positive. This stability

suggests that Player 1’s move, followed by Player 2’s response, results in more pre-

dictable and consistent influence strategies.

The highest influence for both players is typically achieved with more moderate

messages, particularly for Topic 3. This indicates that, in this scenario, moderate

messaging allows both players to capitalize on the existing moderate alignment within

the network, resulting in greater overall influence.

Figure 5.7: Average Influence Over All Topics (2 Player, Player 1 Goes First)
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Figure 5.8: Average Influence Over All Topics (2 Player, Player 2 Goes First)

Average influence over all 50 simulations on each topic in each scenario for both
Players in our 2-Player model.

Figures 5.7 and 5.8 illustrate that when a player moves first, their influence on

the oppositely polarized topic significantly increases. Additionally, they confirm that

Player 1 performs better overall, as moving first allows them to maintain a higher

average influence on their least optimal topic (Topic 2) compared to Player 2, for

whom it is the optimal topic. Furthermore, when Player 2 moves second, they are

able to balance the influence on Topic 3. Overall, when a player moves second, they

gain influence across all topics except the one with the polar opposite alignment, for

which it is most optimal to move first.

Overall Optimal Strategies: Overall, when a player moves second, they gain

influence across all topics, except for the one that is most polarized in the opposite

direction. For this specific topic, it is most optimal to move first, allowing the

first player to shape the network’s opinion before the second player can respond.

For optimal node selection, Players benefit from nodes with strong alignment with
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consensus views, especially when influencing polarized topics. To influence moderate

views, Players should focus on the nodes metrics, prioritizing higher betweenness

centrality, which may lead to a greater cascade of influence. For message, if targeting

a topic that the network is initially aligned with the Player’s direction of influence,

it’s optimal for the Player to send a polarizing message in the same direction. For

topics where the network’s initial opinion is unaligned with the Players’ influence

direction, it’s optimal to use indirect influence via the interdependence of topics.

For all simulations, we collected data on how influence is impacted by the follow-

ing factors:

1. The targeted topic

2. Optimal node selection

3. Optimal message

4. When the Player moves

5. The network’s initial alignment

Based on these results, we analyze the implications for developing optimal strate-

gies for external players aiming to influence a population’s opinion in a desired di-

rection. If Bob is the only one influencing Alice and her friends, Bob should send

a message that influences a vanilla preference while shifting related opinions, like

choices of ice cream toppings. If Alice and her friends already enjoy vanilla, Bob

may see limited influence achieved; however should reaffirm their preference and

send a strong message favoring vanilla. If Tom steps in, Bob should observe Tom’s

actions and then respond. Let the majority of Alice and her friends favor caramel

sauce, chocolate ice cream, and waffle cones, where their opinion on ice cream flavor
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and sauce topping is polarized, but the choice of cone is moderate. If preferring

caramel sauce is related to preferring vanilla ice cream, Bob should send a message

that advocates for caramel sauce, indirectly influencing Alice and her friends to shift

towards vanilla. Finally, Bob should select someone who is relatively aligned with

liking chocolate ice cream and caramel sauce to initiate his pro-vanilla campaign. In

the next section, we synthesize these findings and offer further insights on how to

maximize influence.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

This paper explored optimal strategies for influence maximization in multidimen-

sional opinion space for single-player and competitive two-player scenarios. With

increasing polarization, information overload, and social reliance on technology, this

research answered questions regarding how to assert influence dominance, persuad-

ing the population towards your view, particularly with existing polarization. Across

simulations, we observed consistent patterns revealing the importance of network

topology, opinion alignment, message content, and inter-topic dependencies in shap-

ing cascading effects of influence.

For the one-player model, results confirmed the sensitivity of influence outcomes

to model parameters. Particularly, the propagation threshold δ governs whether a

node forwards information to neighbors with well-aligned opinions. Interestingly,

the increase in this propagation threshold has a disproportionally negative impact

on total influence compared to the forwarding threshold θhigh. This encourages con-
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clusions that the alignment between neighboring nodes plays a vital role in sustaining

information cascades than the alignment of nodes and the message vector itself. in-

dividual node to maximize global influence. Further, findings from our simulations

with synthetic data show that without inertopic dependencies and competition, mes-

sages remained relatively polarizing on the targeted topic; this was also verified when

using real-world data [20]. Notably, the optimal node for initiating diffusion was not

always the one most strongly aligned with the Player’s direction of influence, as seen

in Tables 8.6 and 8.7. This provides key insight into network structure– when a

Player begins diffusion in a node that is already strongly aligned, it amplifies the

misalignment with neighbors by intensifying polarization and, therefore, stagnates

cascade effects [39][28][30]. Strikingly, the initial alignment of the network had a

significant impact on the effectiveness of Players’ strategies. When pushing in the

opposite direction of the status quo, influence gains were higher– depicting the larger

potential for influence when a Player doesn’t confirm preexisting views.

For the two-player simulations, introducing intertopic dependencies and game

theoretic dynamics [38] provided important complexity. Messages that were most

optimal under these conditions tended to be less extreme and showed a preference

for a mixed message strategy. This was consistent in our arbitrary and GSS data

simulations. The C matrix enabled players to indirectly influence topics by targeting

another that was easier to sway depending on the Player’s influence direction and

the network’s initial alignment. This was especially evident when targeting Topic

3 (Political Party), which exhibited a weaker self-influence but exerted a stronger

influence on the other topics 3.11. Specifically, Players leveraged the polarizing

stances on Topics 1 and 2 to indirectly target and influence Topic 3.

Competition between the two players was further investigated by altering which

player moved first. Simulations showed that, generally, the second-mover consistently
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held an advantage. The second player’s ability to observe and react strategically to

the fixed strategies of the first mover enabled a more nuanced targeting strategy.

However, when the network was misaligned with a Player’s stance, moving first was

most optimal as it allowed the Player to shape an early narrative. These results

indicate a trade-off between initiative and reactivity.

Overall, our research provided significant identification of four core components

that remained pivotal for influence maximization:

1. Targeted Topic: Polarized topics or ones with higher inter-topic influence are

effective leveraging points for influence maximization

2. Network Alignment: The initial consensus alignments determine whether a

polarizing or moderate message is optimal

3. Node Selection: Nodes that are moderately aligned with a message but rela-

tively well aligned on polarized topics and with higher centrality offer optimal

cascade potential

4. Timing of Movement: In the presence of competition, reactive strategies

are optimal except when targeting a topic misaligned with your direction of

influence

This collectively emphasizes how optimal strategies for influence are complex,

emerging interplays between network topology, topic of interest, and queued posi-

tion for movement. The research has strong implications for real-world applications

regarding political campaigning, public health, and countermeasures for misinforma-

tion spread.
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6.2 Limitations

A rather obvious limitation to our research is the attempt to simplify complex cog-

nitive processes to mathematical models. Thou we attempt to reflect realistic be-

havioral and opinion dynamics by enhancing traditional models with parameters like

the sociability parameter β, these remain difficult to quantify empirically. For ex-

ample, while Jafari [24] uses a social skill questionnaire[3] to valuing β, applications

may not generalize across contexts. Second, by combining modeling paradigms like

FJ[16][15]memory-based updated and linear threshold dynamics [23][24] we inherited

trade-offs of convergence characterizations that are captured in existing opinion dy-

namic models [12][16][15]. Further, our simulations assume that external agents have

access to accurate knowledge of the node’s opinions. While this may not be entirely

realistic, we argue that in real-world contexts, it’s becoming increasingly plausible

given the oversharing of private information and opinions online and the power of

sentiment analysis tools. However, relaxing this assumption would inherit a more

realistic approach.

Additional constraints exist from our construction of the network. In the absence

of an embedded network in the GSS data, we construct one using probabilistic link

predictions founded on homophily frameworks. While this method aligns with soci-

ological principles, its approximation still remains true. Therefore, the application

of our model to datasets with embedded network topologies would further confirm

the reliability of our insight. Specifically, if the optimal strategies are consistent on

data with an embedded network, then that validates the way we’ve constructed the

graph and has exciting applications to represent any data without embedded graphs

in a realistic network.

Regarding our data, we further acknowledge the temporal structural limitations of
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our data. Though the longitudinal panel study offers data from the same individuals

over certain years, the GSS[20] captures a two-year gap. The lack of a continuous

timescale in the data may under-represent the dynamics of opinion coevolution in

our C matrix, which computes the covariant of individuals’ opinions over the years.

Finally, from a computational standpoint, we faced significant computational

challenges optimizing over both the seed node and multidimensional message vector.

To levy this, we define a base message vector with +/-1 in the index of the target

topic and add vectors populated with random values from a uniform distribution to

restrict our search space. While effective, this heuristic potentially omits globally

optimal strategies. Future research should endeavor to find computationally efficient

ways to optimize over all possible message vectors.

6.3 Future Research

Our study sets up exciting avenues for extensions in future exploration. With many

opinion dynamic models, a primary opportunity lies in empirical validation. Though

we’ve discovered theoretical and simulation-based insights, controlled experiments

on individuals may test these dynamics for verification. For example, we encourage

running a proctored experiment with individuals where variables are controlled to

measure how networks exploded to information interventions influence opinion shifts

and cascade mechanisms.

Since a controlled experiment warrants many challenges, machine learning ap-

proaches offer promising potential for the forecasting of opinion evolution. Through

training predictive models on social media or longitudinal surveys, researchers may

approximate group-level responses to targeted messaging. However, because of the

stochastic and multivariate nature of human behavior, predictions of this degree of-

61



fer more accuracy at the group rather than individual level. We encourage future

research to look into community structures where it may be more effective and inter-

pretable to target demographic clusters. Specifically, studying whether clustering NY

race, gender, income, or political affiliation offers influence pathways that are pre-

dictable serves to deepen understanding of homophily[27] and structural advantages

in opinion networks.

Another future direction subsists on the dynamics of network structures. While

our model assumes an undirected network, meaning connections are binary on an

edge, this isn’t entirely true, especially in the age of social media. At the next stages

of research, incorporating our model to reflect different connections could improve

realism. For example, with social media, many one-way interactions, such as follows,

likes, or views, are increasingly popular. Incorporating this makes the model more

realistic and incorporates additional necessary complexities.

Further, integrating Mean Field Game (MFG) theory could enable the modeling

of very large populations as distributions rather than discrete nodes. This serves

to represent the unrestricted network connectivity in the presence of social media.

A MFG approach to our model offers analytical solutions at the population level

strategies of influence, providing parallels to existing work conducted by Bauso [4]

and Stella et al.[35].

Importantly, we encourage further work on the ethical dimensions of influence

maximization. As influence models become increasingly powerful and applicable,

frameworks that ensure responsible use, especially but not constrained to appli-

cations in political, public health, or commercial contexts, are extremely critical.

Overall, future directions are not limited to the ones presented, as this research has

various applicable directions. The future direction discussed above is merely a start

to motivate exciting possibilities.
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In the end, because Bob read our research and implored strategies discussed, he

was able to leverage Alice and her friends’ level of connectivity, initial opinions, and

strategic movement to persuade them to prefer vanilla ice cream over chocolate.
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Chapter 7

Code

For code used in this thesis please refer to the link below.

https://github.com/relsheikh/Thesis.git
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Chapter 8

Appendix

8.1 Arbitrary Data

Table 8.1: Optimal Node’s Metrics and Initial Opinions 1-Player Arbitrary Data

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Push to 1: 14 10 0.47 0.20 0.0024 [-0.93, 0.82,

-0.48]

Push to -1: 23 15 0.49 0.31 0.0074 [0.97, 0.54,

-0.60]

2: Gun

Permits

Push to 1: 17 13 0.45 0.27 0.0051 [0.55, 0.88,

0.79]

Push to -1: 46 13 0.63 0.27 0.0029 [-0.27, 0.94,

0.92]

3: Political

Party

Push to 1: 42 10 0.71 0.20 0.0011 [0.64, 0.72,

-0.99]

Push to -1: 3 13 0.56 0.27 0.0029 [0.42, -0.96,

0.94]
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Table 8.2: Optimal Node’s Metrics and Initial Opinions 2-Player, Player 1 Goes First
Arbitrary Data

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Player 1: 17 13 0.45 0.27 0.0051 [0.55, 0.88,

0.79]

Player 2: 1 22 0.59 0.45 0.0089 [0.20, -0.69,

-0.69]

2: Gun

Permits

Player 1: 3 13 0.56 0.26 0.0029 [0.42, -0.96,

0.94]

Player 2: 49 23 0.57 0.47 0.0096 [0.01, -0.90,

-0.44]

3: Political

Party

Player 1: 42 10 0.71 0.20 0.0012 [0.64, 0.72,

-0.99]

Player 2: 3 13 0.56 0.27 0.0029 [0.42, -0.96,

0.94]
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Table 8.3: Optimal Node’s Metrics and Initial Opinions 2-Player, Player 2 First
Arbitrary Data

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Player 1: 11 10 0.42 0.20 0.0029 [0.90, 0.93,

0.62]

Player 2: 1 22 0.59 0.45 0.0089 [0.20, -0.69,

-0.69]

2: Gun

Permits

Player 1: 17 13 0.45 0.27 0.0051 [0.55, 0.88,

0.79]

Player 2: 20 27 0.45 0.55 0.0250 [-0.22, -0.46,

0.66]

3: Political

Party

Player 1: 42 10 0.71 0.20 0.0012 [-0.76, -0.32,

0.89]

Player 2: 33 20 0.53 0.41 0.0077 [-0.78, -0.94,

0.27]

In Tables 8.1, 8.3, and 8.2, we calculate important node metrics that measure the
importance of a node for the optimal nodes in both 1-Player and 2-Player scenarios
using the synthetic data. Parameters are initialized still following 3.2
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8.2 GSS Data

Table 8.4: Optimal Node’s Metrics and Initial Opinion without C

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Push to 1: 70 92 0.53 0.33 0.0023 [-1.00, 1.00,

-1.00]

Push to -1: 126 44 0.32 0.16 0.0016 [0.33, -1.00,

0.67]

2: Gun

Permits

Push to 1: 276 37 0.36 0.13 0.0010 [1.00, 1.00,

1.00]

Push to -1: 66 86 0.61 0.31 0.0013 [-1.00, 1.00,

-1.00]

3: Political

Party

Push to 1: 259 115 0.59 0.41 0.0021 [1.00, 1.00,

0.33]

Push to -1: 70 92 0.53 0.33 0.0023 [-1.00, 1.00,

-1.00]
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Table 8.5: Optimal Node’s Metrics and Initial Opinion w C

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Push to 1: 136 98 0.57 0.35 0.0020 [-1.00, 1.00,

-1.00]

Push to -1: 126 44 0.32 0.16 0.0017 [0.33, -1.00

0.67]

2: Gun

Permits

Push to 1: 253 19 0.42 0.068 0.00028 [-1.00, 1.00,

0.00]

Push to -1: 149 88 0.59 0.31 0.0015 [-1.00, 1.00,

-1.00]

3: Political

Party

Push to 1: 106 93 0.60 0.33 0.0015 [-1.00, 1.00,

-1.00]

Push to -1: 200 85 0.61 0.30 0.0013 [-1.00, 1.00,

-1.00]

In Tables 8.4 and 8.5, we calculate important node metrics that measure the impor-
tance of a node for the optimal nodes in both 1-Player scenarios using the GSS data,
with C. Parameters are initialized still following 3.2
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Table 8.6: Optimal Node’s Metrics and Initial Opinion (2 Player, Player 1 Goes
First)

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Player 1: 110 99 0.55 0.35 0.0021 [-1.00, 1.00,

-1.00]

Player 2: 126 44 0.32 0.16 0.0016 [0.33, -1.00,

0.67]

2: Gun

Permits

Player 1: 116 78 0.55 0.28 0.0013 [1.00, 1.00,

0.67]

Player 2: 70 92 0.53 0.33 0.0023 [-1.00, 1.00,

-1.00]

3: Political

Party

Player 1: 94 67 0.59 0.24 0.0010 [1.00, 1.00,

1.00]

Player 2: 126 44 0.32 0.16 0.0016 [0.33, -1.00,

0.67]
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Table 8.7: Optimal Node’s Metrics and Initial Opinion (2 Player, Player 2 Goes
First)

Topic Node Deg. Clust.

Coeff.

Deg.

Central-

ity

Betweenness

Centrality

Initial

Opinion

1: Affirma-

tive Action

Player 1: 2 87 0.59 0.31 0.0013 [-1.00, 1.00,

-1.00]

Player 2: 49 36 0.51 0.13 0.0006 [-1.00, -1.00,

1.00]

2: Gun

Permits

Player 1: 176 67 0.60 0.24 0.0006 [1.00, 1.00,

1.00]

Player 2: 200 85 0.61 0.30 0.0013 [-1.00, 1.00,

-1.00]

3: Political

Party

Player 1: 192 82 0.63 0.29 0.0012 [-1.00, 1.00,

-1.00]

Player 2: 270 138 0.60 0.49 0.0021 [-0.33, 1.00,

-0.33]

In Tables 8.6 and 8.7 We calculate important node metrics that measure the impor-
tance of a node for the optimal nodes in both 2-Player scenarios using the GSS data,
with C. Parameters are intialized still following 3.2

Network Simulation Images With GSS Data

1-Player

Topic 1: Affirmative Action

Push to 1, Without C

71



(a) t=1 (b) t=2 (c) t=3 (d) t=4

Figure 8.1: Topic 1 (Affirmative Action) GSS Data Diffusion (1 Player, Push to 1),
Without C

Push to 1, With C

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5

Figure 8.2: Topic 1 (Affirmative Action) GSS Data Diffusion (1 Player, Push to 1),
With C

Push to -1, Without C

72



(a) t=1 (b) t=2 (c) t=3 (d) t=4

Figure 8.3: Topic 1 (Affirmative Action) GSS Data Diffusion (1 Player, Push to -1),
Without C

Push to -1, With C

(a) t=1 (b) t=2 (c) t=3 (d) t=4

Figure 8.4: Topic 1 (Affirmative Action) GSS Data Diffusion (1 Player, Push to -1),
With C

Topic 2: Gun Permits

Push to 1, Without C

73



(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6

Figure 8.5: Topic 2 (Gun Permits) GSS Data Diffusion (1 Player, Push to 1), Without
C

Push to 1, With C

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5

Figure 8.6: Topic 2 (Gun Permits) GSS Data Diffusion (1 Player, Push to 1), With
C

Push to -1, Without C
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

Figure 8.7: Topic 1 (Affirmative Action) GSS Data Diffusion (1 Player, Push to -1),
Without C

Push to -1, With C

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6

Figure 8.8: Topic 2 (Gun Permits) GSS Data Diffusion (1 Player, Push to -1), With
C

Topic 3: Political Party

Push to 1, Without C
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

Figure 8.9: Topic 3 (Political Party) GSS Data Diffusion (1 Player, Push to 1),
Without C

Push to 1, With C

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6

Figure 8.10: Topic 3 (Political Party) GSS Data Diffusion (1 Player, Push to 1),
With C

Push to -1, Without C
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6 (g) t=7 (h) t=8

Figure 8.11: Topic 3 (Political Party) GSS Data Diffusion (1 Player, Push to -1),
Without C

Push to -1, With C

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6

Figure 8.12: Topic 3 (Political Party) GSS Data Diffusion (1 Player, Push to -1),
With C
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2-Player

For the visualization below colors correspond to the Players in the following way:

Player 1 (Pushing to +1) → Red

Player 2 (Pushing to -1) → Blue

Topic 1: Affirmative Action

Player 1 First

(a) t=1 (b) t=2 (c) t=3 (d) t=4

Figure 8.13: Topic 1 (Affirmative Action) GSS Data Diffusion (2 Player, Player 1
Goes First)

Player 2 First
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6 (g) t=7 (h) t=8

Figure 8.14: Topic 1 (Affirmative Action) GSS Data Diffusion (2 Player, Player 2
Goes First)

Topic 2: Gun Permits

Player 1 First

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5

Figure 8.15: Topic 2 (Gun Permits) GSS Data Diffusion (2 Player, Player 1 Goes
First)
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Player 2 First

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6

Figure 8.16: Topic 2 (Gun Permits) GSS Data Diffusion (2 Player, Player 2 Goes
First)

Topic 3: Political Party

Player 1 First
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(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6 (g) t=7 (h) t=8

Figure 8.17: Topic 3 (Political Party) GSS Data Diffusion (2 Player, Player 1 Goes
First)

Player 2 First

(a) t=1 (b) t=2 (c) t=3 (d) t=4

(e) t=5 (f) t=6 (g) t=7

Figure 8.18: Topic 3 (Political Party) GSS Data Diffusion (2 Player, Player 2 Goes
First)
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*note ChatGPT was used for debugging and code enhancements*
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